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MATHEMATICAL APPENDIX

(a)  Preliminary remarks.

The purpose of this appendix is to state results of importance to the phylogenetic

regression.  The mathematics done is all quite simple, but in order to express it

economically it has been necessary to adopt a rather formal approach.  A major

notational problem is the formal treatment of an arbitrary phylogeny.  In these

preliminary remarks, the meaning and relevance of the four theorems is discussed.

Throughout the appendix, formal remarks are made to explain the direction of the

developing argument.  In many cases the actual objects of interest are not mentioned

in the mathematics at all.  These objects are statistical tests.  The first is the standard

regression.  The variables involved are a y-variable y, a set of x-variables X to be

controlled for, and a set of x-variables Z to be tested for.  The regression is defined by

E(y) = 1tµ + Xβ + Zγ,        (y-Xβ-Zγ) ∝  N(0,V),

where 1t is the constant term, V is defined by

Vij (ρ) = (1 - h
ρ
ij  ),

and h
 
ij   is the height in the initial working phylogeny at which the paths to species i

and j diverge.  “∝ " is used to mean that the variance-covariance matrix of the error is

assumed only to be proportional to V, not necessarily equal to it.  For the purpose of

this appendix the path segment lengths are fixed, so that ρ is considered known.

The first theorem states that the standard regression is equivalent to the long

regression, defined by

E(Ly) = Sδ + LXβ + LZγ,        (Ly-Sδ-LXβ-LZγ) ∝  N(0,C),
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in which L, S and C are matrices defined formally later.  The two regressions are

shown to be equivalent in the sense that the residual sum of squares of the long

regression, concentrated for β and δ, is the same function of y, Z and γ as the residual

sum of squares of the standard regression concentrated for µ and β.  This shows that

the significance tests for γ=0, controlling for 1t and X in the case of the standard

regression and for LX and S in the case of the long regression, will yield the same test

statistic with the same distribution.  Each datapoint in the long regression represents

the deviation of a node's value from its parent node's value.  The data in this form is

suitable for defining the randomization test explained in §3(c).  It is important that C

is a diagonal matrix, so that this theorem allows the standard regression to be fitted by

a package which cannot handle non-diagonal variance-covariance matrices.  GLIM is

such a package.  The reason it is necessary to prove this first theorem is to show that

the formulae for L and C are correct - their forms are far from obvious a priori.  L

represents the process of “hanging on the tree" described in §3(a).

The second and third theorems concern the short regression, defined by

E(GC-1Ly) = GC-1LXβ + GC-1LZγ,        (GC-1L(y-Xβ-Zγ)) ∝  N(0,I),

The distribution of (GC-1L(y-Xβ-Zγ)) is understood as a distribution conditional on

G, as G is a random matrix because it depends on the value of y.  The second theorem

states that the process of performing the long regression, defining the random linear

contrasts GC-1 and forming the elements of the short regression does indeed result in

the same, standard, statistical test as the short regression.  This is shown by proving

that conditional on G, the residual in the short regression after regression of GC-1Ly

on GC-1LX has the same probability density whether the randomness arises through

ε, the error in the standard regression, as transmuted by construction of G and the

formation of the short regression; or whether the randomness is assumed to arise as a

N(0,I) variable in the short regression itself.  The first reason it is necessary to prove
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this theorem is to show that the formula for G is correct.  The second reason is that G

is a random matrix, as it depends on ε.  In general, using contrasts G that depend on ε

will violate the standard formulae for the variances and covariances of the contrasts,

which rely on fixed G.  As was seen in the simulations in §5, the short regression has

high mean square error in its parameter estimate under the null hypothesis, and has

biassed estimates under the alternative hypothesis.  It is therefore not at all obvious

that the short regression will be valid, but, as the theorem shows, it is.

The third theorem states that the short regression is equivalent to the long regression

with T, defined by

E(Ly) = Sδ + LXβ + Tτ + LZγ,        (Ly-Sδ-LXβ-Tθ-LZγ) ∝  N(0,C),

T is a matrix representing a set of artificial variables added to the long regression to

ensure that no matter what value Z may take, the residuals after regression on S, LX,

T and LZ will remain proportional, within each radiation separately, to the residuals

after regression on S and LX alone.  T therefore depends on y, and like G is a random

matrix.  Equivalence means that the residual sum of squares for the long regression

with T, concentrated for β, δ and θ, is the same function of y, Z and γ as the residual

sum of squares of the short regression concentrated for β.  The theorem is proved to

show that the phylogenetic regression can be interpreted as conditioning within the

standard regression on the patterns of the residual in each radiation, in the sense of

“pattern" explained in §3(c).

The fourth theorem shows that the randomization test explained in §3(c) and defined

formally below, is equivalent to the short regression in the sense that the null

distribution of the test statistic of the randomization test is also an F-distribution with

the required degrees of freedom.
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As well as these four results, the mathematical development defines the matrices used

to construct the long and short regressions, and so formally defines the phylogenetic

regression.

The published version of this appendix contained only the definitions, theorems and

remarks.  This full version contains in addition all lemmas and proofs needed to prove

the theorems.

(b)  Mathematical development

A          preliminary         note         on          matrix         notation    .  I shall define matrices as ∆×Θ, where ∆ and Θ

are finite sets, rather than as m×n, were m and n are integers.   An ∆×Θ matrix A will

have elements Aij , where i∈∆  and j∈Θ .  Where a matrix is defined as m×n or ∆×n,

the integers m and n should be understood as shorthand for the sets {1, 2 … m} and

{1, 2 … n}.  The advantage of this notation is that if ∆′ and Θ′ are subsets of ∆ and Θ,

respectively, then a submatrix A′ can be concisely defined as the ∆′×Θ′ submatrix of

A.

Lemma         1    .  If A is an nA×nA matrix of full rank, B is an nA×nB matrix of full rank, λ

is a scalar, nB≤nA, I represents the nB×nB identity matrix and (I+λBTA-1B) is of full

rank, then

(A + λBBT)-1 = A-1 - λA-1B(I+λBTA-1B)-1BTA-1

Proof   .  By multiplication of the proposed inverses and collection of terms in

B(...)BTA-1.

Lemma         2    .  If A is an nA×nA positive definite matrix, B and D are nA×nB and nA×nD

matrices of full rank, nB+nD=nA, BTA-1D=0, and I is the nA×nA identity matrix, then

I - D(DTA-1D)-1DTA-1 = B(BTA-1B)-1BTA-1
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Proof   .  Any nA×1 vector x can be expressed uniquely as Bb+Dd, for some nB×1

vector b and some nD×1 vector d, because together the columns of B and D span the

whole space.  The LHS pre-multiplies x into Bb, and so does the RHS.  They are

therefore the same matrix.

Lemma         3    .  If A is an nA×nA positive definite matrix, and B is an nA×nB matrix of full

rank, nB<nA, then there exists an nA×nD matrix D such that

i) D is of full rank

ii) BTA-1D=0

iii) nB+nD=nA

Proof   .  Let the inner product of two vectors a and b of R
nA
   be defined by aTA-1b.

Then D must be chosen so that its columns minimally span the subspace

complementary to that spanned by the columns of B.

Lemma         4    .  If A is an nA×nA positive definite matrix, and B, D, E and F are full rank

matrices of size nA×nB, nA×nD, nA×nE, and nA×nF, respectively, and

rk(B|E)=rk(B)+rk(E), then if

i) nD+nB=nA

ii) DTA-1B=0, and

iii) FTA-1(B|E)=0,

then there exists an nD×nF matrix H such that H is of full rank and F=DH.

Proof   .  The columns of F must lie in the subspace spanned by the columns of D.  The

ith column of H is the linear combination of the columns of D which equals the ith
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column of F, 1≤i≤nD.  H is of full rank because rk(F)≤min{rk(D),rk(H)}, rk(F)=nF,

and nF≤nD.

Definition         of    Π, Πh, Πs, Πt, Πi, Πdi.  These definitions are made with respect to the

working phylogeny.  Let Π be the set of all nodes, Πt the set of species nodes, Πh the

set of higher (i.e. non-species) nodes and Πs the set of all nodes except the root.  Let

Πi, i∈Π , be the set of species nodes which are descendants of (or equal to) node i.

Let Πdi, i∈Π h, be the set of daughter nodes of node i.  Associate each node with a

distinct integer, to establish an arbitrary ordering over Π.

Definition         of    P, Pi.  Let P denote the partition {Πdi}
 

i ∈Π
 
h
  of Πs, and let Pi, i∈Π , denote

the partition {Πj}
 

 j∈Π
 
di

  of Πi.

Definition         of    n, nt, ns, nh.  Let n be the number of nodes in the working phylogeny, nt

be the number of species nodes, ns be n-1, and nh be the number of higher nodes.

Note every species is either a species node or a higher node but not both, so that

nh+nt=n.  It follows that ns-nh=nt-1.

Definition         of    ′.  Let i′∈Π h denote the parent node of i, i∈Π s.

Definition         of    κ i, hi.  Let κ i be arbitrary non-negative real numbers representing the

length of the path segment between i and i′, i∈Π s, with κi>0 if i∈Π t.  Let hi be the

summed length of the path segments between the root and i, i∈Π .

Definition         of    α(i,j).  Let α(i,j) be the lowest common ancestor of i and j, i,j∈Π .

Remark    .  The h
 
i  just defined are related to the h

 
ij   used in the body of the paper by the

relationship h
 
α(i,j)  = 1 - h

ρ
ij  .  The working phylogeny as used in the appendix is taken

as having already undergone transformation by ρ.

Definition         of    Ωt, Ωs, Ωti, Ωsi.  Let Ωt be the set of column vectors with real elements

indexed by Πt, and let Ωti, i∈Π , be the subspace of Ωt with only those elements
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indexed by Πi.  Let Ωs be the set of column vectors with real elements indexed by Πs,

and let Ωsi, i∈Π h, be the subspace of Ωs with only those elements indexed by Πdi.

Remark    .  The definitions of the various Π's allows means at higher nodes to be dealt

with in the same way as species values.  Ωt and Ωs are the dataspaces of the standard

and long regressions, respectively.

Definition         of    1ti , I ti , 1si.  Let 1ti ∈Ω ti , i∈Π , be the vector each of whose elements

equals one.  Let I ti  be the identity matrix over Ωti.  Let 1si∈Ω si  be the vector each of

whose elements equals one.

Definition         of    Ui.  Let Ui, i∈Π , be the Πi×Πt matrix defined by

(Ui)jk = 1 j=k

0 j≠k

Remark    .  Ui is a matrix which picks out from a vector x∈Ω t those elements indexed

by elements of Πi.  (Uix)∈Ω i, and equals x over those elements held in common.  U
T
i   

transforms a vector x∈Ω i into a vector which is an element of Ωt, equals x in those

elements indexed in common, and equals zero elsewhere.

Lemma         5    .  If α(i,k)=i, α(j,m)=j and α(i,j)≠i,j, then α(k,m)=α(i,j).

Proof   .  This is obvious from the nature of a tree.

Definition         of    V.  Let V be the Πt×Πt matrix defined by

Vij  = hα(i,j), for i,j∈Π t

Extension         of       subscript        notation        for    V.  As an extension of the usual subscript notation,

let V
 
ij   also be defined when i and j are not necessarily species nodes, as the Πi×Πj

submatrix of V.  Further, let Vi denote Vii .
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Lemma         6    .  Vij  = hα(i,j)1
 
i  1

T
j  α(i,j)≠i,j.

Proof   .  By definition of V, Vkm = hα(k,m), k,m∈Π t.  Under the conditions of the

lemma, α(k,m)=α(i,j) ∀ k,m, by Lemma 5, proving the result.

Remark    .  The restrictions in the following lemma are needed, as Vi - h
 
i 1

 
i 1

T
i   equals

zero for species nodes, and Vi - h
 
i ′ 1

 
i 1

T
i   is undefined for the root node.

Lemma         7    .  Vi, i∈Π , and Vi - h
 
i 1

 
i 1

T
i   , i∈Π h, and Vi - h

 
i ′ 1

 
i 1

T
i  , i∈Π s, are all of full

rank and positive definite.

Proof.     For this proof, let PD denote “positive definite".  First it is shown that

If V
 
i - h

 
i 1

 
i 1

T
i   is PD then V

 
i - h

 
i ′ 1

 
i 1

T
i   is PD, i∈Π s (A1)

If the left hand matrix is A and the right hand is B, then we have

B = A + (h
 
i - h

 
i ′ )1

 
i 1

T
i   

Now (h
 
i - h

 
i ′ ) is non-negative because by definition of h it equals κ i.  Hence for any

conformable vector x,

xTBx = xTAx + (h
 
i - h

 
i ′ )(xT1

 
i )2

The second term on the right is non-negative for arbitrary x.  Hence if A is positive

definite, then so is B, as required.  Similar arguments, using the non-negativity of hi ′

or hi instead of (hi-hi ′), show that

If V
 
i - h

 
i ′ 1

 
i 1

T
i   is PD then V

 
i  is PD, i∈Π s (A2a)

If V
 
i - h

 
i 1

 
i 1

T
i   is PD then V

 
i  is PD, i∈Π (A2b)

Next it is shown that

If V
 
j - h

 
i 1

 
j 1

T
j   is PD for all j∈Π di, then V

 
i - h

 
i 1

 
i 1

T
i   is PD, i∈Π h (A3)
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This follows because, by Lemma 6, considered as a Πdi×Πdi matrix according to the

partition Pi of Πi, V
 
i - h

 
i 1

 
i 1

T
i   is diagonal and its jth element is V

 
j - h

 
i 1

 
j 1

T
j  .  A

block diagonal matrix is positive definite if all of its diagonal blocks are positive

definite.

The three results (A1), (A2) and (A3) now allow the lemma to be proved.  (A1) and

(A3) show that the property that V
 
i - h

 
i ′ 1

 
i 1

T
i   is PD is inherited from daughters to

parents in the sense that if all the daughters of node i possess it then so does node i,

provided it is defined for that node.  But for a species node, i∈Π t, V
 
i - h

 
i ′ 1

 
i 1

T
i   is a

1×1 matrix whose element equals κ i, which is by definition strictly positive for i∈Π t.

Hence the property that V
 
i - h

 
i ′ 1

 
i 1

T
i   is PD is possessed by all species nodes and so is

inherited by all i∈Π s.  Now by (A3), V
 
i - h

 
i 1

 
i 1

T
i   is PD for i∈Π h.  The only case

remaining in the statement of the lemma is Vi.  We have now shown for every node

either V
 
i - h

 
i ′ 1

 
i 1

T
i   is PD, or V

 
i - h

 
i 1

 
i 1

T
i   is PD; and by (A2a) and (A2b) this is

sufficient to show that Vi is PD, i∈Π .  Positive definiteness has been established for

all the cases in the statement of the lemma.

Finally, it is sufficient to note that a positive definite matrix must be of full rank.  This

completes the proof.

Definition         of    σ
2
i  .  Let σ

2
i   = (1

T
i  V

-1
i  1

 
i )-1, i∈Π .  Lemma 7 shows that both the inverses

exist.

Remark    .  σ
2
i   is the sampling variance of the mean of all the species below node i, of a

variable whose variance-covariance matrix is V.

Lemma         8    .

1
T
i  (Vi - h

 
i1

 
i1

T
i )

-1
  1

 
i   = ∑

j ∈Π di

 (σ
2
j  - h

 
i)-1 , i∈Π h
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σ
2
i   = 









∑

j∈Π
 
di

(σ
2
j

 
 
 
- h

 
i)-1

 -1
    + h

 
i , i∈Π h

Proof   .  The inverses employed throughout this proof are shown to exist by Lemma 7.

According to Lemma 6, Vi - h
 
i  1

 
i 1

T
i  , i∈Π h, is diagonal when considered as a

Πdi×Πdi matrix according to the partition Pi.  Hence

1
T
i (Vi - h

 
i1

 
i1

T
i )

-1
  1

 
i  = ∑

j ∈Π di

 1
T
j (Vj - h

 
i1

 
j1

T
j )

-1
 1

 
j 

But V
 
j  - h

 
i  1

 
j 1

T
j   can be inverted by Lemma 1, pre- and post-multiplied by 1

 
j , and re-

arranged to give

1
T
j (Vj - h

 
i1

 
j1

T
j ) -11

 
j   = 

1
T
j V

-1
j 1

 
j

1 - h
 
i1

T
j V

-1
j 1

 
j

     =  
1

σ
2
j  - h

 
i

 

and so

1
T
i  (Vi - h

 
i1

 
i1

T
i )

-1
  1

 
i   = ∑

j ∈Π di

 (σ
2
j  - h

 
i)-1 

establishing the first part of the lemma.  V
 
i  in the form (Vi - h

 
i 1

 
i  1

T
i  ) + h

 
i 1

 
i 1

T
i   can

be inverted by Lemma 1, pre- and post-multiplied by 1
 
i  ,  and then rearranged to give

(1
T
i  V

-1
i  1

 
i )-1 = (1

T
i (V

 
i - h

 
i1

 
i1

T
i )

-1 
  1

 
i )-1 + h

 
i 

Together, these last two equations establish the second part of the lemma, completing

the proof.

Definition         of    fi.  Let fi∈Ω t, i∈Π , be defined by fi=U
T
i  V

-1
i  1

 
i (1

T
i V

-1
i 1

 
i) -1 .
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Lemma         9    .     f
T
i  Vf

 
j   = hα(i,j) α(i,j)≠i,j.

σ
2
i  α(i,j)=i.

Proof   .  After expanding the fi and fj, it is necessary to notice that U
 
i VU

T
j  = Vij , and

that when α(i,j)=i, U
T
i  U

 
i  U

T
j   = U

T
j   and U

 
j U

T
i  1

 
i =1

 
j .  With the definition of σ

2
i   and

Lemma 6 on the form of Vij , the results then follow immediately by direct

computation.

Definition         of    L, Li, W    and     K.  Let L be a Πs×Πt matrix whose ith row is denoted by

Li, and defined by

Li = [f
T
i   - f

T
i ′ ]

and let W be a Πs×Πs matrix defined by W=LVLT.  Let K be a Πt×Πs matrix defined

by

Kij = 1 α(i,j)=j

0 o.w.

Remark    .  L is the matrix of linear contrasts which transforms the variables of the

standard regression into the corresponding variables of the long regression.  fi is a

vector which maps (by taking the inner product) a vector of species values into the

mean value for species below node i.  So fi-fi ′ produces the deviation of the mean of

the species below node i from the mean of the species below the parent of node i.  If

the variance covariance matrix of a random vector x is V, then that of Lx is W.  K is a

matrix with a row for every species, and a column for every node except the root.  An

element equal to 1 indicates that the column-node is an ancestor of (or is equal to) the

row-node.

Notational       convention         of        bracketed        subscripts   .  Any array dimension indexed by Πs

can also be considered to be indexed by Πh, according to the partition P of Πs.  It is
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convenient to be able to use both forms of indexing explicitly.  Accordingly

unbracketed subscripts will refer in the usual way to indexing by Πs, while bracketed

subscripts will refer to the partitional indexing.  Thus Wij  is a single element of the

matrix W, defined for i,j∈Π s.  W(i)j  is a Πdi×1 vector defined for i∈Π h, j∈Π s.  W(ij)

is the Πdi×Πdj submatrix of W, defined for i,j∈Π h.

Lemma         10    .

Wij  = 0 if i′≠ j′

-(σ
2
i ′  - hi ′) if i ′=j′, i≠j

σ
2
i   - σ

2
i ′ if i ′=j′, i=j

Equivalently,

W(ij)  = 0 i≠j

diag
 

k∈Π
 
di

(σ
2
k - h

 
i)  - (σ

2
i   - h

 
i  )1

 
si 1

T
si i=j

Proof   .  It is convenient to assume without loss of generality that if i′ and j′ are

ancestor and descendant, then it is i′ that is the ancestor.  Formally, if α(i′,j′)=j′, then

i′=j′.  The proof considers in turn five distinct and mutually exhaustive cases.  By

definition, Wij =L
 
i  VL

T
j  .  Expanding L

 
i  VL

T
j   using Lemma 9 yields:

Case 1,  α(i′,j′)≠i′:  L
 
i VL

T
j   = hα(i,j) - hα(i,j) - hα(i,j) + hα(i,j) = 0.

Case 2,  α(i′,j′)=i′, i′≠ j′, α(i,j ′)=i:  L
 
i  VL

T
j   = σ

2
i   - σ

2
i ′  - σ

2
i   + σ

2
i ′  = 0.

Case 3,  α(i′,j′)=i′, i′≠ j′, α(i,j ′)≠i:  L
 
i  VL

T
j   = hα(i,j ′) - σ

2
i ′  - hα(i,j ′) + σ

2
i ′   = 0.

Case 4,  α(i′,j′)=i′, i′=j′, i≠j:  L
 
i VL

T
j   = hi ′ - σ

2
i ′  - σ

2
i ′  + σ

2
i ′   = hi ′ - σ

2
i ′ .

Case 5,  α(i′,j′)=i′, i′=j′, i=j:  L
 
i VL

T
j   = σ

2
i   - σ

2
i ′  - σ

2
i ′  + σ

2
i ′   = σ

2
i   - σ

2
i ′ .
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Cases 1, 2 and 3 all have i′≠ j′, and so show the first part of the proposition.  Case 4

and Case 5 demonstrate the second and third parts respectively.

Definition         of    C.  Let C be a Πs×Πs matrix defined by C=diag
 
i ∈Π s(σ

2
i  - h

 
i ′) .

Definition         of    |.  If A and B are two matrices with the same number of rows, then let

A|B denote the matrix formed by juxtaposing the columns of A and B.

Definition         of    M
t
  , N

t
  , M

s
  , N

s
  .  If A is a Πt×nA matrix of full rank, nA≤nt, then let M

t
A  

= A(ATV-1A)-1ATV-1, and let NtA  = I t - M
t
A .  If A is a Πs×nA matrix of full rank,

nA≤ns, then let M
s
A  = A(ATC-1A)-1ATC-1, and let N

s
A  = I s - M

s
A .  In each case,

rk(MA)=rk(A).  In each case, if A is a null matrix, then let MA=0, and NA=I.

Remark    .  The M's and N's are orthogonal projection matrices in the Ω space indicated

by their superscript.  M projects onto the columns of the subscripted matrix, while N

projects onto the space orthogonal to them.  Orthogonality in Ωt is taken with respect

to V-1, and in Ωs is taken with respect to C-1.  The principal properties of projection

matrices, which will be used without comment, are that MA|BA=A, and NA|BA=0;

that MAMA=MA, NANA=NA and MANA=0; that if the columns of A and B span the

same subspace, then MA=MB and NA=NB; and that if the columns of A are

orthogonal to the columns of B then MAB=0 and NAB=B.

Lemma         11    .     KL=N
t
1t 

Proof   .  The ith row of KL is

([f
T
i   - f

T
i ′ ] + [f

T
i ′  - f

T
i ′′  ] + [f

T
i ′′   - f

T
i ′′′  ] + … + - f

T
r  ]),

where r represents the root node.  This equals [f
T
i   - f

T
r  ].  f

T
i  , i∈Π t, by definition

contains a 1 in position i, and zeroes elsewhere.  f
T
r   is constant for all rows, and as

Ur=I t,  f
T
r   equals (1

T
i  V

-1
i  1

 
i )-11

T
i  V

-1
i  .  Hence
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KL = I
 
t  - 1

 
t(1

T
t V

-1
 1

 
t) -11

T
t  V

-1
  ,

which equals N
t
1t  as required.

Lemma         12    .  L1t=0

Proof   .  The ith row of L is [f
T
i   - f

T
i ′ ], but calculation from the definition of fi using

Ui1t=1i shows that f
T
i  1t=1, for all i∈Π .  Hence each element of L1t equals 1-1=0, as

required.

Definition         of    S.  Let S be a Πs×Πh matrix defined by

Sij  = 1 i∈Π dj

0 i∉Π dj

Equivalently, when considered as a Πh×Πh matrix according to the partition P of Πs,

S is diagonal with S(i)i=1si, i∈Π h.

Lemma         13    . W = C - S(STC-1S)-1ST.

Proof   .  C and S can be considered as Πh×Πh matrices according to the partition P of

Πs.  The off-diagonal elements of both C and S all equal zero by definition.  Hence it

suffices to prove that

W(ii)  = C(ii)  - 1
 
si(1

T
siC

-1
(ii)1

 
si) -11

T
si ,  i∈Π h.

Consider first the off-diagonal elements.  The off-diagonal elements of the left hand

side are all equal to h
 
i   - σ

2
i  .  The off-diagonal elements of the right hand side all

equal

-(1
T
si C

-1
(ii)  1

 
si )-1 = − 





∑

j ∈Π ti

(σ
2
j

 
 
 
- hj ′)-1  

-1
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so the off-diagonal elements of the two sides are equal according to Lemma 8.

Consider next the diagonal elements.  The diagonal element of the left hand side

indexed by j, j∈Π di, is σ
2
j   - σ

2
i   by Lemma 10.  The corresponding diagonal element

of the right hand side is C
 
jj   plus the off-diagonal element.  But as these are equal in

the right and left hand sides, we can write

cj = σ
2
i   - hi ′ - (hi - σ

2
i   ) = σ

2
j   - σ

2
i  

which proves the result.

Lemma         14    .  STC-1L=0

Proof   .  Let ST be partitioned into a row of submatrices si, i∈Π h, in which si contains

(as columns) the rows of S indexed by Πdi.  Let L be partitioned into a column of

submatrices mi, i∈Π h, in which mi contains the rows of L indexed by Πdi.  We can

now write

STC-1L = ∑
i∈Π h

 

 siC
-1
(ii)mi 

We proceed by showing that each element of the sum equals zero.  The element

indexed by i looks like this:







00000...
. . . . . ..
. . . . . ..
00000...
11111...
00000...
. . . . . .. 










C

-1
j1j1(f

T
j1- f

T
i )

C
-1
j2j2(f

T
j2- f

T
i )

C
-1
j3j3(f

T
j3- f

T
i )

C
-1
j4j4(f

T
j4- f

T
i )

............

 

where j1, j2 etc represent the elements of Πdi.  The rows of the matrix product

corresponding to the zero rows in the left hand factor will be zero.  This leaves only
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the row indexed by i, which is the row of ones.  The product of this row with the right

hand factor is

∑
j∈Π di

 

C
-1
jj (fj-fi)T , (A4)

and the lemma will be proved if this can be shown to equal zero for all i∈Π h.

Expanding the fi from its definition, and using the definition of C, we obtain that (A4)

equals

∑
j∈Π di

 

 
1

σ
2
j -h

 
i

 (σ
2
j 1

T
j V

-1
j U

 
j - σ

2
i 1

T
i V

-1
i U

 
i) 

By Lemma 8,

∑
j∈Π di

 
1

σ
2
j -h

 
i

    =   
1

σ
2
i -h

 
i

 ,

so the lemma will be proved if we can prove the equality

∑
 
j∈Π di

 

σ
2
j

σ
2
j -h

 
i

1
T
j V

-1
j U

 
j  = 

σ
2
i

σ
2
i -h

 
i

 1
T
i  V

-1
i  U

 
i (A5)

which we now proceed to do.

V
 
i   in the form (Vi - h

 
i  1

 
i 1

T
i  ) + h

 
i 1

 
i  1

T
i   can be inverted by Lemma 1, pre-multiplied

by 1i, and re-arranged to yield

1
T
i  V

-1
i   = 

1

1 + h
 
i1

T
i (V

 
i  - h

 
i1

 
i1

T
i )

-1 
 1

 
i

  1
T
i (V

 
i - h

 
i1

 
i1

T
i )

-1 
  (A6)
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The scalar factor on the RHS of (A6) equals, by the first part of Lemma 8,

1

1 + h
 
i ∑
j ∈Π di

 (σ
2
j  - h

 
i)-1

 

which using the second part of Lemma 8 becomes

σ
2
i  - h

 
i

σ
2
i

 

Using

(V
 
i   - h

 
i 1

 
i  1

T
i  ) = diag

 
j ∈Π di(V

 
j-h

 
i1

 
j1

T
j ) 

from Lemma 6, the matrix inverse on the RHS of (A6) can be expressed using

Lemma 1 as

diag
 
j ∈Π di(V

-1
j + 

h
 
i

1 - h
 
i1

T
j V

-1
j 1

 
j

 V
-1
j 1

 
j1

T
j V

-1
j ) 

Hence the RHS as a whole equals

σ
2
i  - h

 
i

σ
2
i

   row
 
j ∈Π di( 

σ
2
i

σ
2
j  - h

 
i

 1
T
j V

-1
j ) 

We can therefore conclude from (A6) that

σ
2
i

σ
2
i  - h

 
i

  1
T
i  V

-1
i   = row

 
j ∈Π di( 

σ
2
i

σ
2
j  - h

 
i

 1
T
j V

-1
j ) 

This equality differs only notationally from the equality (A5) we had to prove, and so

completes the proof.

Lemma         15    .  If A is a Πt×nA matrix of full rank, B is a Πt×nB matrix of full rank, and

A and B are linearly independent, then
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N
t
A|B  = N

t

(N
t
AB)

 N
t
A 

Proof   .  The lemma states that residualizing on (A|B) is equivalent to residualizing on

A, and then on B residualized on A.  Let D be a matrix of full rank such that (D|A|B)

spans Ωt and such that DTV-1(A|B)=0.  The existence of D is guaranteed by Lemma

3.  Then there is a unique decomposition of a vector x∈Π t into x=Dd+(A|B)



a

b    The

LHS of the statement of the lemma pre-multiplies x into Dd.  N
t
A x=Dd+(0|N

t
A B)



a

b  ,

and the second term is annihilated on pre-multiplication by N
t

(N
t
AB)

  because N
t

(N
t
AB)

N
t
A B=0.  To prove the lemma, it remains to show that N

t

(N
t
AB)

 D=D.  By properties of

projection matrices, this will be true if N
t
A B and D are orthogonal.  But

BTN
t
A TV-1D = BT(I t - V-1A(ATV-1A)-1AT)V-1D,

and as BTV-1D=0 and ATV-1D=0, the whole expression equals zero as required.

Hence D and N
t
A B are orthogonal and the lemma is proved.

Lemma         16    . If A is a Πt×nA matrix of full rank, and if 1t and A are linearly

independent, then

N
t
1t|A

T
  V-1N

t
1t|A    =   L

T
  N

s
LA|S

T
  C-1N

s
LA|S L

Proof   .  Expanding the projection matrices, the RHS becomes

LTC-1L - LTC-1(LA|S)



 ATLTC-1LA  A TLTC-1S 

 STC-1LA  STC-1S 
-1
 (LA|S) TC-1L

By Lemma 14, STC-1L=0, and so this simplifies to

LTC-1L - (LTC-1LA|0)



 ATLTC-1LA  0 

 0  STC-1S 
-1
 (LTC-1LA|0) T

and so to

LTC-1L - LTC-1LA(A TLTC-1LA)-1ATLTC-1L

By Lemma 15, we have N
t
1t|A =N

t

(N
t
1tA)

 N
t
1t =(I t - M

t

(N
t
1tA)

 )N
t
1t , which is defined

because the condition of the theorem that 1t and A are linearly independent ensures
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that N
t
1t A is of full rank.  We can use this to expand the LHS as follows

N
t
1t TV-1N

t
1t  - N

t
1t TV-1N

t
1t A(ATN

t
1t TV-1N

t
1t A)-1ATN

t
1t TV-1N

t
1t 

To show that the RHS and LHS are equal, it will therefore suffice to show that

LTC-1L=N
t
1t TV-1N

t
1t .  Lemma 13 implies that WC-1W=W, and W by definition

equals LVLT.  Hence

LVL TC-1LVL T = LVL T

Pre-multiplying by K and postmultiplying by KT, and applying Lemma 11 we obtain

N
t
1t VLTC-1LVN

t
1t T = N

t
1t VN

t
1t T

Substituting (I t-M
t
1t ) for N

t
1t  in the LHS, and using L1t=0 from Lemma 12 yields

VLTC-1LV = N
t
1t VN

t
1t T

Calculation shows that V
-1
  N

t
1t V=N

t
1t T, so pre- and post-multiplication by V-1 gives

LTC-1L = N
t
1t TV-1N

t
1t 

as required.  This completes the proof.

Remark    .  The following theorem says that the long regression, which has C as its

variance-covariance matrix, is equivalent to the standard regression.  C is a diagonal

matrix.  This allows GLIM, for example, to handle the standard regression, even

though it does not allow covariances among the errors.  The LHS of the statement of

the theorem is the residual sum of squares in the standard regression, concentrated for

the parameter vectors for 1t and X, as a function of y, Z and γ.  The RHS is the

residual sum of squares in the long regression, concentrated for the parameter vectors

of S and LX, as a function of y, Z and γ.  Before the theorem we formally define the

data of the analysis.  Note that the null hypothesis is implicit in the definition of y.
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Definition         of    ε, y, µ, X, β, Z, nX, nZ.  Let ε be a random variable over Ωt, distributed

as N(0,V).  Let µ be a scalar, X a Πt×nX matrix of full rank which is linearly

independent of 1t, β an nX×1 vector, and Z a Πt×nZ matrix.  Let y be a random

variable defined by y=(1t|X)






µ

β
 +ε.

Theorem          1    .  If γ is an nZ×1 vector, then

(y-Zγ)
T
  N

t
1t|X

T
  V-1N

t
1t|X(y-Zγ)  = (Ly-LZγ)

T
  N

s
LX|S

T
  C-1N

s
LX|S(Ly-LZγ) 

Proof   .  N
s
LX|S  is well defined only if (LX|S) is of full rank, and this is established

first.  S is of full rank by construction, and by Lemma 14 STC-1L=0 so to show

(LX|S) of full rank it remains to show that LX is of full rank.  Suppose not, then there

exists a vector a≠0 such that LXa=0 and so by Lemma 11 we have KLXa=N
t
1t Xa=0.

As X is of full rank, if a≠0 then Xa≠0.  But only multiples of 1t are annihilated by N
t
1t ,

hence Xa is a multiple of 1t.  However, this contradicts the definition of X, which

states that 1t and X are linearly independent.

The statement of the theorem will be true if

N
t
1t|X

T
  V-1N

t
1t|X    =   L

T
  N

s
LX|S

T
  C-1N

s
LX|S L

but this is the statement of Lemma 16, with X in the place of A.  This completes the

proof.

Definition         of    e, Πg, ng, Ωg, Ig, τ, λ.  Let e be a random variable over Ωs defined by

e = N
s
S|LX Lε

Let Πg={i|i ∈Π h, e(i)≠0}.  Let ng be the number of elements of Πg.  Let Ωg be the set

of column vectors with real elements indexed by Πg.  Let I g be the identity matrix

over Ωg.  Let ji=min{j|j ∈Π di, τj≠0}, i ∈Π g.  Let τ be a random variable over Ωs

defined by
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τ
 
(i)  ∝  e

 
(i) ,    τ

T
(i) C

-1
(ii)  τ

 
(i)  = 1,   τ

 
j i  >0 i∈Π g

τ(i) = 0 i∉Π g

For i∈Π g, the conditions define in turn the relative values of the elements of τ
 
(i) , the

magnitude of τ
 
(i)  and the sign of τ

 
(i) .  Let λ be a random variable over Ωg defined by

e(i)=λiτ(i), i∈Π g.

Remark    .  It is formally possible that Πg={}, if all of the variability in y has been

explained by X.  In what follows I shall tacitly assume that this is not the case.  In

practical terms, this situation will be obvious because of a zero sum of squares in the

standard regression, and in theoretical terms it has no particular interest.  There is no

possibility of discovering if Z explains variability in y from such a dataset.

Definition         of    M
g
  , N

g
  .  If A is a Πg×nA matrix of full rank, nA≤ng, then let M

g
A  =

A(ATA)-1AT, and let N
g
A  = I g - M

g
A .  Note that rk(MA)=rk(A).  In the case that A is a

null matrix, let M
g
A =0, and N

g
A =I g.  M

g
   and N

g
   are orthogonal projection matrices

over Ωg, and orthogonality is taken with respect to Ιg.

Definition         of    G.  Let G be a Πg×Πs matrix defined by

Gi(j)  = τ
T
(i)  i=j

         0  i≠j

Remark    .  e is the residual in the long regression after regression of y on X.  Πg is the

set of higher nodes at which these residuals are not identically zero.  The

circumstances in which some of the residuals are identically zero is discussed in

§3(e).  Usually, Πg=Πh.  Ωg is the dataspace of the short regression.  τ is a vector

containing the “pattern" of the residuals, and λ contains the “magnitudes" in the sense

of §3(c).  G is a matrix which in combination with C will form the linear contrasts

GC-1 which transform the long regression into the short regression.  GTGC-1 is a

projection matrix, as the following lemma shows.  The short regression can therefore
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be seen as a projection of the long regression onto the columns of GT.  The ith column

of GT has zero everywhere except in the radiation of node i, and there it is

proportional to e(i), the residuals in the long regression of y on X.  This projection

ensures that all the residuals after regression on GC-1LZ must lie in the same space,

and so must be proportional, within each radiation, to e(i).

Lemma         17    .  GC-1GT = I g and GC-1S = 0

Proof   .  The first part is obvious in view of the diagonality of C and the definition of

G.  C and S are diagonal matrices according to the partition P of Πs.  From the

definition of G,

Gi(j)  =  0 i≠j

(GC-1S)ii  ∝  e
T
(i) C-1S

 
(i)i  i∈Π g

Hence if eTC-1S=0, then so does GC-1S.  But from the definition of e, eTC-1S equals

(Ly)TN
s
S|LX TC-1S = (Ly)TC-1N

s
S|LX S.  However, N

s
S|LX S = 0 and so the second part

of the lemma is proved.

Definition         of    Xg.  Let Xg be a Πg×rk(GC-1LX) matrix defined such that the columns

of Xg span the same subspace as those of GC-1LX.  Xg may be a null matrix.

Remark    .  This definition is needed in case GC-1LX is not of full rank even though LX

is.  See §3(e).  Xg=GC-1LX will satisfy the definition when GC-1LX is of full rank.

Lemma         18    .  If A is a Πt×nA matrix of full rank, and 1t and A are linearly independent,

then LN
t
1t|A  = N

s
S|LA L.

Proof   .  The lemma will be true if

LM
t
1t|A  = M

s
S|LA L
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which we now prove.  (1t|A) and (1t|N
t
1t A) span the same subspace of Ωt, so it

follows that M
t
1t|A =M

t

1t|N
t
1t

A
 .  The LHS therefore equals

L(1t|N
t
1t A)







1

T
t V-11

 
t 0

0 ATN
t
1t

TV-1N
t
1tA

 -1
 
 

(1t|N
t
1tA) TV-1

which using L1t=0 from Lemma 12, its consequence that LN
t
1t =L, and the block

diagonality of the inverse of the partitioned matrix, reduces to

LA(A TN
t
1t TV-1N

t
1t A)-1(N

t
1t A)TV-1 (A7)

Because (S|LA) and (S|N
s
S LA) span the same subspace of Ωs, M

s
S|LA =M

s

S|N
s
SLA

 , and

so the RHS equals

(S|N
s
S LA)







STC-1S 0

0 ATLTN
s
STC-1N

s
SLA

 -1
 
 

(S|N
s
SLA) TC-1L

Using STC-1L=0 from Lemma 14 , its consequence that N
s
S L=L, and the block

diagonality of the inverse of the partitioned matrix, this equals

LA(A TLTC-1LA)-1(LA)TC-1L (A8)

It will now be shown piecewise that (A7) equals (A8) thus proving the lemma.  Both

formulae begin with LA.  The matrix inverses that follow are equal because

LTC-1L=N
t
1t TV-1N

t
1t  by Lemma 16, and the remaining portions are equal for the

same reason and because N
t
1t TV-1N

t
1t =N

t
1t TV-1.  This completes the proof.

Lemma         19    .  Conditional on τ, λ ~  N(0,N
g
Xg ).

Proof   .  First it is established that the support of the probability distribution of e is the

subspace of Ωs orthogonal to (S|LX), and that there the density is proportional to

exp(− 
1
2  eTC-1e)
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Let η=N
t
1t|X ε, and ϕ=M

t
1t|X ε. As the cross-product M

t
1t|X TV-1N

t
1t|X  equals zero, the

density of ε is proportional to

exp(− 
1
2  εTV-1ε)  =  exp( − 

1
2  εTN

t
1t|X TV-1N

t
1t|X ε − 

1
2  εTM

t
1t|X TV-1M

t
1t|X ε)

which in turn yields

= exp( − 
1
2  ηTV-1η − 

1
2  ϕTV-1ϕ)

Hence the density of η is zero on the subspace orthogonal to (1t|X), where it is

proportional to

exp( − 
1
2  ηTV-1η)  ⌡⌠

 

 

exp( − 
1
2 ϕTV-1ϕ) dϕ

and so it is also proportional simply to

exp( − 
1
2  ηTV-1η)

e=Lη, so the density of e will be as claimed if

ηTV-1η = eTC-1e  where N
t
1t|X η=η and e=Lη

which we now prove.  Over the relevant subspace, the LHS is equal to

ηTN
t
1t|X TV-1N

t
1t|X η

and the RHS equals

ηTN
t
1t|X TLTC-1LN

t
1t|X η

By Lemma 18, LN
t
1t|X =N

s
S|LX L, so the RHS equals

ηTLTN
s
S|LX C-1N

s
S|LX Lη

But Lemma 16 shows that
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N
t
1t|X TV-1N

t
1t|X  = LTN

s
S|LX C-1N

s
S|LX L

and so the two sides are equal, completing the proof of the distribution of e.

We now proceed to find the distribution of λ.  From the definition of τ and λ, we have

e
T
(i) C

-1
(ii)  e

 
(i)  = λ

2
i  τ

T
(i) C

-1
(ii)  τ

 
(i)  =  λ

2
i      i∈Π g

hence

eTC-1e = λTλ,  and so exp(− 
1
2  eTC-1e) = exp(− 

1
2  λTλ)

To derive the distribution of λ, it remains to establish over what subset of Ωg the

density is non-zero, and what the Jacobian of the transformation is.  The subset of Ωg

is those values of λ corresponding to an e belonging to the subspace of Ωs defined by

M
s
S|LX e=0.  As e(i)=λiτ(i) this condition becomes

(S|LX)TC-1 col
 
i ∈Π g {λ iτ(i)} = 0

But STC-1GT=0 by Lemma 17, so (STC-1)
T
(i) τ(i)=0 and therefore S may be dropped.

Writing (LX)(i) for the submatrix of LX containing only those rows indexed by Πdi,

this condition is equivalent to

∑
 
i ∈Π h

 
 
λ

 
i (LX)

T
(i)C

-1
(ii)τ

 
(i)  = 0,  or  (GC-1LX)Tλ = 0,  hence to (Xg)Tλ = 0

The subset of Ωg over which the density of λ is defined conditional on τ is therefore a

subspace defined by (Xg)Tλ=0.  Conditional on τ, e(i)=λ(i)τ(i) implies that de∝ dλ, so

there is no non-constant term in the Jacobian.  We have now established that the

density of λ is proportional to

exp(− 
1
2  λTλ)
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where M
g
Xg λ=0.  A random variable with distribution N(0,N

g
Xg ) has density

proportional to exp(− 
1
2  ξTξ) where M

g
Xg ξ=0, and zero elsewhere.  But this is the

same density as λ, and so λ too is distributed as N(0,N
g
Xg ).  This completes the proof.

Remark    .  The following theorem shows that the short regression is analytically valid

in the case where the working phylogeny is the true phylogeny, and ρ is known and

taken as fixed at its true value.  It does this by giving the probability density of N
g
Xg

GC-1Ly, the residual vector after regression of GC-1Ly on GC-1LX, based on the

whole process of computing the long regression, conditioning on τ, and using the

random linear contrasts GC-1 to form the short regression.  The theorem shows that

conditional on τ, the probability density is the same as it would have been if GC-1LX

were taken as fixed, and the residual's density calculated on the basis of an error ψ

distributed as N(0,I g) in the regression yg=GC-1LXβ+ψ.  This equivalence of the

residual density in the two cases establishes the exactness of the short regression for

testing for the addition of GC-1LZ.  Note that conditional on τ, GC-1LZ is fixed and

not random.

Theorem          2    .  Conditional on τ

N
g
Xg GC-1Ly ~  N(0,N

g
Xg )

Proof   .  We show that N
g
Xg λ=λ, and then the theorem follows immediately from

Lemma 19.  We begin with the identity

Ly = L( (1t|X)






µ

β
  + ε ) = M

s
S|LX L( (1t|X)







µ

β
  + ε ) + N

s
S|LX L( (1t|X)







µ

β
  + ε )

L1t=0 from Lemma 12.  We also know that N
s
S|LX Lε=e by definition, and N

s
S|LX  

annihilates LX while M
s
S|LX  preserves it.  Hence these expressions also equal

M
s
S|LX L(Xβ+ε) + e
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Pre-multiplying by GC-1 yields

GC-1Ly = GC-1M
s
S|LX L(Xβ+ε) + GC-1e

N
g
Xg GC-1(S|LX)=0 because GC-1S=0 by Lemma 17, and because the columns of Xg

and the columns of GC-1LX span the same subspace of Ωg.  Expansion of the

projection matrix therefore shows that N
g
Xg  annihilates the first term of the RHS.

Further, calculation shows that GC-1e=λ.  Hence pre-multiplying by N
g
Xg  gives

N
g
Xg GC-1Ly = N

g
Xg λ

But N
g
Xg λ=λ because by Lemma 19 the density of λ is zero except over the subspace

where this is true.  This completes the proof.

Definition         of    T, nT.  Let nT=ns-nh-ng.  Let T be a Πs×nT matrix of full rank which

satisfies TTC-1(S|GT)=0, and rk(T|S|GT)=ns.  If ns-nh-ng=0, then T will be a null

matrix.

Remark    .  T will be null only when the working phylogeny is binary and as a

consequence the phylogenetic regression and the standard regression are the same.

Remark    .  The following theorem shows that the long regression with T is equivalent

to the short regression.  The LHS is the sum of squares of the long regression,

concentrated for the parameter vectors associated with LX, S and T.  The RHS is the

residual sum of squares of the short regression, concentrated for the parameter vectors

associated with GC-1LX.  The introduction of A allows for possible collinearity

between T and LX, or in other words that rk(Xg)<rk(LX).

Theorem          3    .  Let A be a Πs×rk(S|LX|T) matrix of full rank whose columns span the

same subspace of Ωs as the columns of (S|LX|T).  Then conditional on τ,

(Ly-LZγ)
T
  N

s
A

T
  C-1N

s
A(Ly-LZγ) 
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= (GC-1Ly-GC-1LZγ)
T
  N

g
Xg

T
  I

-1
g  N

g
Xg(GC-1Ly-GC-1LZγ) 

Proof   .  The statement of the theorem will be true if

N
s
A

T
  C-1N

s
A  = C-1G

T
  N

g
Xg

T
  I

-1
g  N

g
Xg GC-1

which by definition of the projection matrices simplifies to

C-1N
s
A  = C-1G

T
  N

g
Xg GC-1

which we now prove.  Let nR=ns-rk(S|T|LX)=ns-rk(A).  By Lemma 3, there exists a

Πs×nR matrix R of full rank, which satisfies rk(A|R)=rk(S|T|LX|R)=ns, and

ATC-1R=0 so that (S|T|LX)TC-1R=0.  As rk(S|T|GT)=ns, and GTC-1(S|T)=0 from

Lemma 17 and construction of T, by Lemma 4 there exists a Πg×nR matrix Q of full

rank such that R=GTQ.

By Lemma 2 the LHS equals C-1M
s
R , which can in turn be written as

C-1R(RTC-1R)-1RTC-1

Substituting GTQ for R, and as GC-1GT=I g by Lemma 17, this equals

 C-1GTQ(QTGC-1GTQ)-1QTGC-1

=  C-1GTQ(QTQ)-1QTGC-1

= C-1GTM
g
Q GC-1

To prove the theorem, it therefore remains to show that

C-1GTM
g
Q GC-1 = C-1G

T
  N

g
Xg GC-1

By Lemma 2, M
g
Q =N

g
Xg  and so this equality will hold, only provided rk(Xg|Q)=ng,

and QTXg=0.  QT(GC-1LX)=RTC-1LX, which equals zero by the definition of R, and

because the columns of Xg and those of GC-1LX span the same subspace of Ωg,
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QTXg=0 too.  Now GC-1 is a Πg×Πs matrix of full rank, and by construction of R,

rk(S|T|LX|R)=ns.  Hence

rk(GC-1(S|T|LX|R))=rk(GC-1S|GC-1T|GC-1LX|GC-1R)=ng

As GC-1S=0 by Lemma 17 and GC-1T=0 by construction of T, and

GC-1R=GC-1GTQ=Q by Lemma 17,  it follows that

rk(GC-1LX|Q)=ng,

and so rk(Xg|Q)=ng too, as required.  This completes the proof of the theorem.

Definition         of    F.  If a is a Πg×1 vector, B is an Πg×nB matrix of full rank, nB<ng, D is

a Πg×nD matrix of full rank, nB+nD<ng, rk(B|D)=rk(B)+rk(D), and aTN
g
B|D a≠0, then

let F(a,B,D) equal

aTM
g

N 
BD

a

aTN
g
B|Da

     =   

aTM
g

N 
BD

a

aTN
g

B
 
 
a - aTM

g

N 
BD

a
    

Definition         of    Zc.  Let Zc be a matrix of full rank formed by deleting columns from Z

in such a way that (Xg|GC-1LZc) is of full rank and that

rk(Xg|GC-1LZc)=rk(Xg|GC-1LZ).  Zc may be a null matrix.

Definition         of    mX, mZ.  Let mX=rk(Xg), and mZ=rk(Zc).

Definition         of    Γ.  Let Γ be defined almost surely as a Πg×mZ random matrix whose

elements are independently distributed in normal distributions, with zero mean, and

Var(Γij ) = 
e

T
(i)C

-1
(i)e

 
(i)

(e
T
(i)C

-1
(i)(LZc)

 
(i)j )2

 

This definition fails when the denominator is zero for any i,j.

Definition         of    Ψ.  Let Ψ be a Πs×mZ random matrix defined almost surely by
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Ψ(i)j  = Γij (LZc)(i)j i∈Π g, j=1..mZ

0 i∈Π h-Πg, j=1..mZ

Remark    .  Ψ is the random alternative to Z of the randomization test described in

§3(c).

Definition         of    Φ1, Φ2, Φ.  Let Φ1 be a random Πg×nZ matrix defined by Φ1=GC-1Ψ,

and let Φ2 be a random Πg×(ng-mX-mZ) matrix whose elements have normal

distributions with zero mean and unit variance, independent of each other and of Γ.

Let Φ=(Φ1|Φ2).

Lemma         20    .  Φij  have independent normal distributions with zero mean and unit

variance.

Proof   .  Independence and zero mean follow for Φ1 because Φij  equals a constant

times Γij .  Unit variance follows because that constant equals the inverse of the square

root of the variance of Γij .  Φ2 has the required distribution by definition.

Remark    .  The following theorem shows that the randomization test described in §3(c)

is the same test as the short regression.  Formally, the randomization test is to find the

p-value for the null hypothesis that γ=0 by finding

Pr{F(GC-1Ly,Xg,GC-1Ψ)>F(GC-1Ly,Xg,GC-1LZc)},

in which the substitution of Ψ for LZc is the only difference between the two sides of

the inequality.  If this probability is low, it implies that randomly selected explanatory

variables would rarely explain as much of the remaining variation in Ly as LZc does.

The short regression's test statistic would also have an F-distribution with mZ and

ng−mX−mZ degrees of freedom.

Theorem          4    .  Conditional on y, F(GC-1Ly,Xg,GC-1Ψ) has an F-distribution with mZ

and ng−mX−mZ degrees of freedom.
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Proof   .  For brevity, let a=GC-1Ly, B=Xg.  By the definition of F and the relationship

between the F-distribution and the Beta distribution, and noting that GC-1Ψ=Φ1, it

suffices to show that

q = 

aTM
g

N
 
BΦ1

a

aTN
g
Ba

 

has a Beta distribution with mZ and ng−mX−mZ degrees of freedom.  For a definition

of the Beta distribution, and its relationship to the F distribution, see Abramowitz &

Stegun (1965, 26.5.1, 26.5.2 and 26.5.28).  We apply Gram-Schmidt

orthogonalization (see for example Kingman and Taylor 1966, page 201) to the

columns of N
g
B(Φ1|Φ2)  in order, yielding a Πg×(ng-mX-mZ) random matrix Λ

conformally partitioned into (Λ1|Λ2).  There is still ambiguity in the definition of Λ,

up to multiplication of each column by ±1.  We complete the definition of Λ by

requiring that the inner product of each pair of corresponding columns from

N
g
B(Φ1|Φ2)  and Λ should be positive.  Gram-Schmidt orthogonalization ensures that

the columns of Λ are mutually orthogonal, and are of unit length.  Further, that the

first k columns of Λ, k=1,2, .. rk(Λ) span the same subspace as the first k columns of

N
g
B(Φ1|Φ2) .  By virtue of its construction Λ therefore satisfies

ΛTΛ = I, ΛTB = 0,

Because of symmetry between the columns of Φ, and the spherical symmetry of the

normal distribution which Φ has by virtue of Lemma 20, the distribution of Λ satisfies

freq(Λ) ∝ 1 ΛTΛ=I, ΛTB=0

0 o.w.

By construction, Λ1 spans the same subspace as N
g
B Φ

 
1 , so there exists a random

mZ×mZ matrix ς defined by Λ
 
1 =N

g
B Φ

 
1 ς.  Now
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M
g

N
g
BΦ1

  = M
g
Λ1ς-1  = Λ

 
1 ς-1((ς-1)TΛ

T
1 Λ

 
1 ς-1)-1(ς-1)TΛ

T
1  = Λ

 
1 Λ

T
1 

and so

q = 
aTΛ

 
1Λ

T
1a

aTN
g
Ba

 

Let d be the random (ng-mX)×1 vector defined by d=ΛTa, and let d1=Λ
T
1 a.  The

distribution of d in R
ng-mX
   is spherically symmetrical with fixed length aTN

g
B a.

The volume element of d for which d1 is a constant is the surface of an (ng−mX−mZ)

sphere of radius aTN
g
Ba - dTd , and the volume element of vectors d1 such that d

T
1 d

 
1  

equals a constant is the surface of an mZ sphere of radius d
T
1d

 
1  .  Hence the density

of d
T
1 d

 
1 , which equals aTΛ1Λ1Ta, is proportional to







d
T
1d

 
1 

 mZ
  





aTN
g
Ba-d

T
1d

 
1 

 ng-mX-mZ
  

and so the density of q is proportional to

q
mZ/2
 (1-q)

(ng-mX-mZ)/2
  

which is the Beta distribution with mZ and ng−mX−mZ degrees of freedom

(Abramowitz & Stegun 1965, 26.5.1 and 26.5.2), as required.
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