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MATHEMATICAL APPENDIX
(a) Preliminary remarks.

The purpose of this appendix is to state results of importance to the phylogenetic
regression. The mathematics done is all quite simple, but in order to express it
economically it has been necessary to adopt a rather formal approach. A major
notational problem is the formal treatment of an arbitrary phylogeny. In these
preliminary remarks, the meaning and relevance of the four theorems is discussed.
Throughout the appendix, formal remarks are made to explain the direction of the
developing argument. In many cases the actual objects of interest are not mentioned
in the mathematics at all. These objects are statistical tests. The firsstenitherd
regression The variables involved are a y-variable y, a set of x-variables X to be

controlled for, and a set of x-variables Z to be tested for. The regression is defined by

E(y) = L + XB + 2y, (y-XB-Zy) O N(O,V),

wherel; is the constant term, V is defined by
Vi) = (- 1),

and ki is the height in the initial working phylogeny at which the paths to species i
and j diverge. [J" is used to mean that the variance-covariance matrix of the error is
assumed only to be proportional to V, not necessarily equal to it. For the purpose of

this appendix the path segment lengths are fixed, sp tisatonsidered known.

The first theorem states that the standard regression is equivalentaoghe

regression defined by

E(Ly) =S5+ LXB + L2y,  (Ly-S-LXB-LZy) O N(0,C),



in which L, S and C are matrices defined formally later. The two regressions are
shown to be equivalent in the sense that the residual sum of squares of the long
regression, concentrated fdrandd, is the same function of y, Z agds the residual

sum of squares of the standard regression concentratgdfm{3. This shows that

the significance tests f@=0, controlling forl; and X in the case of the standard
regression and for LX and S in the case of the long regression, will yield the same test
statistic with the same distribution. Each datapoint in the long regression represents
the deviation of a node's value from its parent node's value. The data in this form is
suitable for defining the randomization test explained in 83(c). It is important that C

is a diagonal matrix, so that this theorem allows the standard regression to be fitted by
a package which cannot handle non-diagonal variance-covariance matrices. GLIM is
such a package. The reason it is necessary to prove this first theorem is to show that
the formulae for L and C are correct - their forms are far from obwqueri. L

represents the process of “hanging on the tree" described in §3(a).
The second and third theorems concerrstimt regressiondefined by
E(GClLy) = GCILXB + GC1LZy, (GCLL(y-XB-Zy)) O N(0,1),

The distribution of (GEL(y-XB-Zy)) is understood as a distribution conditional on

G, as G is a random matrix because it depends on the value of y. The second theorem
states that the process of performing the long regression, defining the random linear
contrasts G& and forming the elements of the short regression does indeed result in
the same, standard, statistical test as the short regression. This is shown by proving
that conditional on G, the residual in the short regression after regressionlaf/GC

on GCLLX has the same probability density whether the randomness arises through

€, the error in the standard regression, as transmuted by construction of G and the
formation of the short regression; or whether the randomness is assumed to arise as a

N(O,I) variable in the short regression itself. The first reason it is necessary to prove
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this theorem is to show that the formula for G is correct. The second reason is that G
is a random matrix, as it dependssonin general, using contrasts G that depené on

will violate the standard formulae for the variances and covariances of the contrasts,
which rely on fixed G. As was seen in the simulations in 85, the short regression has
high mean square error in its parameter estimate under the null hypothesis, and has
biassed estimates under the alternative hypothesis. It is therefore not at all obvious

that the short regression will be valid, but, as the theorem shows, it is.

The third theorem states that the short regression is equivalenidaghegression

with T, defined by

E(Ly) =S5+ LXB+ Tt +L2y,  (Ly-S-LXPB-T6-Lzy) O N(0,C),

T is a matrix representing a set of artificial variables added to the long regression to
ensure that no matter what value Z may take, the residuals after regression on S, LX,
T and LZ will remain proportional, within each radiation separately, to the residuals
after regression on S and LX alone. T therefore depends ony, and like G is a random
matrix. Equivalence means that the residual sum of squares for the long regression
with T, concentrated fd8, & and®, is the same function of y, Z agés the residual

sum of squares of the short regression concentratd fohe theorem is proved to

show that the phylogenetic regression can be interpreted as conditioning within the
standard regression on the patterns of the residual in each radiation, in the sense of

“pattern” explained in 83(c).

The fourth theorem shows that the randomization test explained in 83(c) and defined
formally below, is equivalent to the short regression in the sense that the null
distribution of the test statistic of the randomization test is also an F-distribution with

the required degrees of freedom.
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As well as these four results, the mathematical development defines the matrices used
to construct the long and short regressions, and so formally defines the phylogenetic

regression.

The published version of this appendix contained only the definitions, theorems and
remarks. This full version contains in addition all lemmas and proofs needed to prove

the theorems.
(b) Mathematical development

A preliminarynoteon matrix notation | shall define matrices &0, whereA and®

are finite sets, rather than asm were m and n are integers. Ax© matrix A will

have elements ;A where iA and [® . Where a matrix is defined ascmorAxn,

the integers m and n should be understood as shorthand for the sets {1, 2 ... m} and
{1, 2 ... n}. The advantage of this notation is thak'iland®’ are subsets df and®,
respectively, then a submatrix #an be concisely defined as tN@®' submatrix of

A.

Lemmal. If Ais an nxna matrix of full rank, B is an gxng matrix of full rank,A
is a scalar, g<na, | represents thegxng identity matrix and (IxBTA-1B) is of full

rank, then
(A +ABBT)1=A-1-AA-1B(I+ABTA-1B)-1BTA-1

Proof. By multiplication of the proposed inverses and collection of terms in

B(...)BTA"L

Lemma2. If Ais an mxna positive definite matrix, B and D ar@®ng and mxnp

matrices of full rank, g+np=na, BTA-1D=0, and | is the gxna identity matrix, then

| - D(DTA-1D)1DTA-Ll = B(BTA-1B)1BTA1



Proof. Any mx1 vector x can be expressed uniquely as Bb+Dd, for sgmeé n
vector b and somepx1 vector d, because together the columns of B and D span the
whole space. The LHS pre-multiplies x into Bb, and so does the RHS. They are

therefore the same matrix.

Lemma3. If Ais an mxna positive definite matrix, and B is an®ng matrix of full

rank, rg<np, then there exists amRnp matrix D such that
i)  Dis of full rank
i) BTA-1D=0
i) ng+np=na

n
Proof. Let the inner product of two vectors a and R4t be defined by BA-1b.
Then D must be chosen so that its columns minimally span the subspace

complementary to that spanned by the columns of B.

Lemma4. If Ais an mxna positive definite matrix, and B, D, E and F are full rank
matrices of size gxng, Naxnp, Naxng, and MXxng, respectively, and

rk(B|E)=rk(B)+rk(E), then if

i) Nnp+Ng=na

i) DTA-1B=0, and

iii) FTA-1(B|E)=0,

then there exists arpAng matrix H such that H is of full rank and F=DH.

Proof. The columns of F must lie in the subspace spanned by the columns of D. The

ith column of H is the linear combination of the columns of D which equals the ith



column of F, ki<np. H is of full rank because rk@&nin{rk(D),rk(H)}, rk(F)=nF,

and ne<np.

Definition of M, My, Mg My, M, Mgi. These definitions are made with respect to the
working phylogeny. Lell be the set of all nodeB; the set of species nodés;, the

set of higher (i.e. non-species) nodes Brdhe set of all nodes except the root. Let
M;, i , be the set of species nodes which are descendants of (or equal to) node i.
Let Mg;, il p, be the set of daughter nodes of node i. Associate each node with a

distinct integer, to establish an arbitrary ordering dver

Definition of P, R. Let P denote the partitiod¥ji} i o of Mg, and let R, il , denote

the partition {'Ij}jm1 i of IM;.

Definition of n, R, ns, . Let n be the number of nodes in the working phylogeny, n
be the number of species nodesh@ n-1, and mbe the number of higher nodes.
Note every species is either a species node or a higher node but not both, so that

Np+ni=n. It follows that g-np=nt-1.
Definition of . Let {lM ph denote the parent node of{li .

Definition of ki, hy. Letk; be arbitrary non-negative real numbers representing the
length of the path segment between i andi s, with ;>0 if illl . Let h be the

summed length of the path segments between the root dfd.i, i
Definition of a(i,j). Leta(i,j) be the lowest common ancestor of i and [ili,}.

Remark The h just defined are related to thg lused in the body of the paper by the
relationship lj =1 - tﬁ . The working phylogeny as used in the appendix is taken

as having already undergone transformatiop.by

Definition of Qt, Qs, Q1i, Qsi. Let Q¢ be the set of column vectors with real elements

indexed by, and letQy, il , be the subspace & with only those elements



indexed by1j. LetQgbe the set of column vectors with real elements indexdispy

and letQg;, il p, be the subspace Ok with only those elements indexed By;.

Remark The definitions of the variou$'s allows means at higher nodes to be dealt
with in the same way as species valu@sandQg are the dataspaces of the standard

and long regressions, respectively.

Definition of 14, I, 1sj. Let14[Q 4, il , be the vector each of whose elements
equals one. Ldtj be the identity matrix oveRj. Let1lgi[@ i be the vector each of

whose elements equals one.
Definition of U;j. Let U, il , be the1jxM; matrix defined by

Udk= 1 =k
0 izk

Remark U; is a matrix which picks out from a vectdfXx those elements indexed

: T
by elements ofl;. (Ujx)[Q i, and equals x over those elements held in common. U
transforms a vector® ; into a vector which is an element@f{, equals x in those

elements indexed in common, and equals zero elsewhere.
Lemma5. If a(i,k)=i, a(j,m)=j anda(i,j)#i,j, thena(k,m)=a(i,j).
Proof. This is obvious from the nature of a tree.
Definition of V. Let V be thd1xIM; matrix defined by

Vij = hyg,j), fori,jm ¢

Extensionof subscriphotationfor V. As an extension of the usual subscript notation,

let Vjj also be defined when i and j are not necessarily species nodesllasithe

submatrix of V. Further, let Mlenote \f.



Lemmab. Vi = hgijli 1jT a(i,)) #i,).

Proof. By definition of V, \km = hy(k,m), k,;mNl . Under the conditions of the

lemma,a(k,m)=a(i,j) Ok,m, by Lemma 5, proving the result.

- : : T
Remark The restrictions in the following lemma are needed,jas; 1; equals

: T . ,
zero for species nodes, and-\: 1; 1; is undefined for the root node.

, T . T .
Lemma7. Vj, il ,and\{-h 141 il h,and \{-h: 1 L , il s, are all of full

rank and positive definite.
Proof. For this proof, let PD denote “positive definite”. First it is shown that
T. T,
IfVi-h1 1 isPDthenV-h 11 isPD, il g (A1)
If the left hand matrix is A and the right hand is B, then we have
T
B=A+(-h)LJ

Now (h - iy ) is non-negative because by definition of h it equalsHence for any

conformable vector x,
xTBx = xTAX + (i - h/ )(xT1; )2

The second term on the right is non-negative for arbitrary x. Hence if A is positive
definite, then so is B, as required. Similar arguments, using the non-negatiyity of h

or hyinstead of (lxh;"), show that
IfV,-h L 1 isPDtheny is PD, M s (A2a)
IfV,-h 11 isPDthenY is PD, M (A2b)
Next it is shown that

T. T .
IfVj-h 11 isPDforalljll g then\{-h 1L isPD, Il p (A3)
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This follows because, by Lemma 6, considered@gj&l14; matrix according to the
" T. . L . T

partition R of I, Vj - iy 1; 1j is diagonal and its jth elementis VM 1; 3 . A

block diagonal matrix is positive definite if all of its diagonal blocks are positive

definite.

The three results (Al), (A2) and (A3) now allow the lemma to be proved. (Al) and
(A3) show that the property that Vh 1 1iT is PD is inherited from daughters to
parents in the sense that if all the daughters of node i possess it then so does node i,
provided it is defined for that node. But for a species ndde,iV; - hy 1 1iT isa

1x1 matrix whose element equals which is by definition strictly positive foflil .

Hence the property that;V hy 1 1iT is PD is possessed by all species nodes and so is
inherited by all il s. Now by (A3), \{ - hy 1; 1iT is PD for ill . The only case
remaining in the statement of the lemma js We have now shown for every node
either i -y 1 1 is PD, or (- h 1; 1| is PD; and by (A2a) and (A2b) this is
sufficient to show that Mis PD, illl . Positive definiteness has been established for

all the cases in the statement of the lemma.

Finally, it is sufficient to note that a positive definite matrix must be of full rank. This

completes the proof.

Definitiono_fq% . Letq% = (1iT V{l 1)L, i . Lemma 7 shows that both the inverses

exist.

2 . . . , ,
Remark o; is the sampling variance of the mean of all the species below node i, of a

variable whose variance-covariance matrix is V.

Lemmas.

1 (Vi-hit) s = ) (o -yt im

jm g
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o = (sz- hi)_lBI +h, il

, 0

Proof. The inverses employed throughout this proof are shown to exist by Lemma 7.
According to Lemma 6, MV h 1; L—T, iM p, is diagonal when considered as a
MgixMgi matrix according to the partition.PHence
T T.-1 T T.-1
Tvi-hat) 1 = D ;- k)
jm g
ButV; - h 1 1jT can be inverted by Lemma 1, pre- and post-multiplied; byand re-

arranged to give

UV 1
T . vl

L (Vi-hy1) -1y = T 1 =7
1-h1jVj1j O'j-h

and so

1] (vi-ha) L = ) of -yt

jm g

establishing the first part of the lemma; M the form (\V- iy 1 1iT) + hy 1 L-T can

be inverted by Lemma 1, pre- and post-multipliediby and then rearranged to give
T, 1 T -1
@G Vi 1) =@(Vi-hLd) " L)t+h

Together, these last two equations establish the second part of the lemma, completing

the proof.

Definition of f;. Let §Q@ , il , be defined byj£U; Vi 1;(1]V; 1)1,
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Lemma9. f Vfj = hagj) a(iij) #ij.

o ai,j)=i.

Proof. After expanding thg &ind §, it is necessary to notice thatVUjT: Vi, and
that wherni(i,j) =i, Uj Uj U = U] and Y Uj 1, =1, . With the definition of;~ and
Lemma 6 on the form ofjy/ the results then follow immediately by direct

computation.

Definition of L, Lj, WandK. Let L be dl1sxI; matrix whose ith row is denoted by
Li, and defined by

T T
Li=1[fi -fi]

and let W be &lgxMg matrix defined by W=LVIT. Let K be dl1¢xMNg matrix defined

by

Kij = 1 a(i,)=j

0 0.W.

Remark L is the matrix of linear contrasts which transforms the variables of the
standard regression into the corresponding variables of the long regresssam. f

vector which maps (by taking the inner product) a vector of species values into the
mean value for species below node i. &g produces the deviation of the mean of

the species below node i from the mean of the species below the parent of node i. If
the variance covariance matrix of a random vector x is V, then that of Lx is W. Kis a
matrix with a row for every species, and a column for every node except the root. An
element equal to 1 indicates that the column-node is an ancestor of (or is equal to) the

row-node.

Notationalconventiorof bracketedsubscripts Any array dimension indexed Dl

can also be considered to be indexedilgyaccording to the partition P bfs. It is
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convenient to be able to use both forms of indexing explicitly. Accordingly
unbracketed subscripts will refer in the usual way to indexing Hwhile bracketed
subscripts will refer to the partitional indexin@hus W is a single element of the
matrix W, defined for i[ll s. W; is allgix1 vector defined forlll p, jI s. W)

is thelMgixMgj submatrix of W, defined for il p.

Lemmalo.
Wi = 0 if I'2]'
2 e e e
-(o;: - hir) ifi'=)’, i
2
o -G, if i'=j", ij
Equivalently,
Wi = 0 %]
: 2 2 T .
diagp (Ok-h) - @ -h)lsils i=]

Proof. It is convenient to assume without loss of generality thaaifd | are
ancestor and descendant, then itikat is the ancestor. Formallygaifi',j")=j’, then
i'sj'. The proof considers in turn five distinct and mutually exhaustive cases. By

definition, W =L, VLJ-T. Expanding |_VLjT using Lemma 9 yields:

Case 1,a(i"j)#i": L VLjT = hu(i,j) - o) - o) + hagij) = 0.

N e s T 2 2 2 2
Case 2,a(i",j)=i", i/, a(i,j")=i: LiVL; =0i -0, -0; +0; =0.

Case 3,a(i'j)=i", i#]', a(ij)#i Li VL =haGj)-0; - hagj) +0 = 0.

s e e T 2 2 2 2
Case 4,a(i",j)=i", I'=j', i#: LiVL; =h-0; -0 +0; =hy -0 .

N ey ey e T 2 2 2 2 2 2
Case 5,a(i",j)=i", I'=j', i=j: LiVLj =0i -0; -0y +0jp =0j -0 .
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Cases 1, 2 and 3 all haveji, and so show the first part of the proposition. Case 4

and Case 5 demonstrate the second and third parts respectively.
Definition of C. Let C be &lsxIMg matrix defined by C=diag S(oi2 -h).

Definition of |. If A and B are two matrices with the same number of rows, then let

A|B denote the matrix formed by juxtaposing the columns of A and B.

Definition of Mt , Nt , M , N°. IfAis alixna matrix of full rank, ;<n, then let I\tél
= AATV-1A)-IATV-1 and Ietﬂ\l =t - MtA . If A'is allgxna matrix of full rank,
na<ng, then let M\ = A(ATC1A)IATCL, and let N =ls- M . In each case,

rk(Ma)=rk(A). In each case, if A is a null matrix, then lexa®0, and N=I.

Remark The M's and N's are orthogonal projection matrices iQthpace indicated

by their superscript. M projects onto the columns of the subscripted matrix, while N
projects onto the space orthogonal to them. Orthogonalfdy is taken with respect

to V-1, and inQg is taken with respect to€ The principal properties of projection
matrices, which will be used without comment, are thafg=A, and Na|sA=0;

that MAMa=Ma, NaNa=Na and MaNa=0; that if the columns of A and B span the
same subspace, thera®Mp and Nn=Ng; and that if the columns of A are

orthogonal to the columns of B therp@=0 and N\B=B.
Lemmall ~ KL=Nj,
Proof. The ith row of KL is
T T T T T T T
(Ifi -fl+Mf -f I+ -fu T+ +-F]),

: T T . _—
where r represents the root node. This equials[}]. f, , i ¢, by definition
. . e T .
contains a 1 in position i, and zeroes elsewhgreis tonstant for all rows, and as

U=l frT equalsliTV[1 1 )'11.-TV{1. Hence
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KL =1y - 4,11V '1) 11 v
t
which equals N, as required.
Lemmal2. L1=0

T
Proof. The ith row of L is ﬁ - f ], but calculation from the definition of fising
Ui1li=1; shows thatin 1t=1, for all ilM . Hence each element otiequals 1-1=0, as

required.
Definition of S. Let S be BlgxIMy matrix defined by
Sj=1 i g
0 i g

Equivalently, when considered aslgxl, matrix according to the partition P [3f,

S is diagonal with §;j=1g;j, il p.
Lemmal3. W = C - S($C-1S)y1gT,

Proof. C and S can be consideredasl, matrices according to the partition P of
Ms The off-diagonal elements of both C and S all equal zero by definition. Hence it
suffices to prove that

Wiy = Gii) - 1si(1lpiﬁ) 1) 11; im p.

Consider first the off-diagonal elements. The off-diagonal elements of the left hand
side are all equal tq h oiz . The off-diagonal elements of the right hand side all

equal

T -1 2 1
-(Lsi Ciijy Lsi) L= - (5 - hj')'1E

ti
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so the off-diagonal elements of the two sides are equal according to Lemma 8.

Consider next the diagonal elements. The diagonal element of the left hand side
indexed by j, [M qi, is 0,-2 - oiz by Lemma 10. The corresponding diagonal element
of the right hand side isjCplus the off-diagonal element. But as these are equal in

the right and left hand sides, we can write
G=of -h-(h-of )=af -0

which proves the result.

Lemmal4. S'C1L=0

Proof. Let S be partitioned into a row of submatricgsi®l p, in which $ contains
(as columns) the rows of S indexedly;. Let L be partitioned into a column of
submatrices mill p, in which m contains the rows of L indexed big;. We can

now write

STCIL = Z sciﬁ) m;
im g

We proceed by showing that each element of the sum equals zero. The element

indexed by i looks like this:

1 T T —
0000.. 1 Giaia(fj1~fi) |
1T 7
N B PP U PR e
0000.—F |1 T T
1111..] Fisjs(fiz-fi) =
0000..[ 7 |1 T 1| |
iaiafis~ Ti)

where p, j2 etc represent the elementdtfi. The rows of the matrix product

corresponding to the zero rows in the left hand factor will be zero. This leaves only
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the row indexed by i, which is the row of ones. The product of this row with the right

hand factor is

> T, (Ad)
jm g

and the lemma will be proved if this can be shown to equal zero fdf ajl i

Expanding thejffrom its definition, and using the definition of C, we obtain that (A4)

equals
1 T, -1
—— (071 Vi Uj - 0 1 Vi)
0j -hI
jm i
By Lemma 8,
11
chz-hi O'iz-hi ’
jm g

so the lemma will be proved if we can prove the equality

(A5)

Jjm i
which we now proceed to do.

Vi inthe form (\{- iy 1; 1iT) +h 1 1iT can be inverted by Lemma 1, pre-multiplied
by 1;, and re-arranged to yield
T -1 1

vt = - —— 1 (Vi- NN (A6)
1+h3(Vi-hlLl) L




18

The scalar factor on the RHS of (A6) equals, by the first part of Lemma 8,
1

1+h Y (@ -hytL

jm g

which using the second part of Lemma 8 becomes

2
g - h
2
Y

Using
T . T.
Vi -h1 )= dlaqm di(vj'hiljlj)

from Lemma 6, the matrix inverse on the RHS of (A6) can be expressed using

Lemma 1l as

. hj
diag (Vi + ————V 11V
gm Vi * 7 hivig 4V
Hence the RHS as a whole equals
criz - hi 02
rowm (2 1JV j)
GI o -h
We can therefore conclude from (A6) that
2 2
Oj Gj
2 1. V. =rowm (2 VJl)
o -h oj - hy
This equality differs only notationally from the equality (A5) we had to prove, and so

completes the proof.

Lemmal5. If Ais allixna matrix of full rank, B is d1ixng matrix of full rank, and

A and B are linearly independent, then
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t t

t
N =N N
AlB (N,tﬁ\ gy A

Proof. The lemma states that residualizing on (A|B) is equivalent to residualizing on
A, and then on B residualized on A. Let D be a matrix of full rank such that (D|A|B)
spans; and such that BV-1(A|B)=0. The existence of D is guaranteed by Lemma
3. Then there is a unique decomposition of a vedibrpinto x:Dd+(A|B)%E The
. . t l\t @
LHS of the statement of the lemma pre-multiplies x into Dg.x&Dd+(0| B)@D’
and the second term is annihilated on pre-multiplicationt?ly N because f\lt
(NAB) (NoB)

NtA B=0. To prove the lemma, it remains to show th%\\lt{ IE\5I) D=D. By properties of
A

projection matrices, this will be true if;\I\B and D are orthogonal. But
BTNtA TV-1ID = BT(l¢ - V- IA(ATV-1A)-1AT)V-1D,

and as BV-1D=0 and ATV-1D=0, the whole expression equals zero as required.

Hence D and fAIB are orthogonal and the lemma is proved.

Lemmalsé. If A is allxna matrix of full rank, and ifly and A are linearly

independent, then
t T t T T
Niga V-INgga = L NiA|S ClNiAlSL

Proof. Expanding the projection matrices, the RHS becomes
DATLTCILA ATLTCIS[HL
0 sTcllA  STcils O

By Lemma 14, 8C-1L=0, and so this simplifies to

ATLTCULA 0 [
LTCU - LTCUA)g 4 o1 ¢

LTCIL - LTCYLA|S) (LA|S) TCIL
LTCILA0) T
and so to
LTCIL - LTCILAATLTCILA)IATLTCIL
t t t t t
By Lemma 15, we haveya :N(Nt A N1t =(l¢ - M(Nt A) )N1; , which is defined

1t ) 1t
because the condition of the theorem thatnd A are linearly independent ensures
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t
that Ni; A is of full rank. We can use this to expand the LHS as follows
t t t t t t t t
N1t TV-INg; - N3 TV-INg A(ATNz TV-INg A)-IATNg TV-INg
To show that the RHS and LHS are equal, it will therefore suffice to show that
t t . . .
LTCIL=N1; TV-IN1; . Lemma 13 implies that W8V=W, and W by definition

equals LVLT. Hence
LVLTCILVLT =LVLT

Pre-multiplying by K and postmultiplying by K and applying Lemma 11 we obtain
N1, VLTC-ILVN3, T = N3, VN1, T

Substituting (t-Mtlt ) for Ntlt in the LHS, and using2;=0 from Lemma 12 yields
VLTCILV =Ny, VN3, T

Calculation shows that'%/Nat V:Nat T, so pre- and post-multiplication by Mgives
LTC-LL = Ny, TV-INg,

as required. This completes the proof.

Remark The following theorem says that the long regression, which has C as its
variance-covariance matrix, is equivalent to the standard regression. C is a diagonal
matrix. This allows GLIM, for example, to handle the standard regression, even
though it does not allow covariances among the errors. The LHS of the statement of
the theorem is the residual sum of squares in the standard regression, concentrated for
the parameter vectors fiwand X, as a function of y, Z aiyd The RHS is the

residual sum of squares in the long regression, concentrated for the parameter vectors
of S and LX, as a function of y, Z ayd Before the theorem we formally define the

data of the analysis. Note that the null hypothesis is implicit in the definition of y.
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Definition of €, y, 4, X, B, Z, nx, nz. Lete be a random variable ovey, distributed
asN(0,V). Letu be a scalar, X Blyxnx matrix of full rank which is linearly

independent of;, 3 an nx1 vector, and Z &lyxnz matrix. Lety be a random

[l
variable defined byy(lﬂX)%E—ks.

Theoreml. Ifyis an rx1 vector, then
T t T t T T
(y-Zy) Nigx V-INigx(y-2y) = (Ly-LZy) Nixs CINCxs(Ly-LZy)

Proof. NEX|S is well defined only if (LX|S) is of full rank, and this is established

first. S is of full rank by construction, and by Lemma I€$L=0 so to show

(LX|S) of full rank it remains to show that LX is of full rank. Suppose not, then there
exists a vector#0 such that LXa0 and so by Lemma 11 we have KL=>N;ELt Xa=0.

As X is of full rank, if &0 then X&0. But only multiples of; are annihilated byth,
hence Xa is a multiple df. However, this contradicts the definition of X, which

states thal; and X are linearly independent.
The statement of the theorem will be true if
t T t T T
Nigx V-INggx = L NEX|S ClNinS L

but this is the statement of Lemma 16, with X in the place of A. This completes the

proof.
Definition of e,Mg, ng, Qg, Ig, T, A. Let e be a random variable o¥eg defined by
e= N;|LX Le

Let Mg={ili I n, ;#0}. Let ngbe the number of elementsaf. LetQq be the set
of column vectors with real elements indexedly Letl g be the identity matrix
overQq. Letj=min{j|j g, 7;#0}, il g. Lett be a random variable oveX

defined by
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T -1 -
o Uep. 1o i) To =1, 1; >0 im g

1) =0 im g

For il g, the conditions define in turn the relative values of the elemengs athe

magnitude oftj and the sign ofj . LetA be a random variable ov&y defined by

&i)=Ait(). il g

Remark It is formally possible thdlg={}, if all of the variability in y has been

explained by X. In what follows | shall tacitly assume that this is not the case. In
practical terms, this situation will be obvious because of a zero sum of squares in the
standard regression, and in theoretical terms it has no particular interest. There is no

possibility of discovering if Z explains variability in y from such a dataset.

Definition of m? , N IfAs algxna matrix of full rank, m<ng, then let I\/X =
A(ATA)-IAT and let N = lg- Ma . Note that rk(M)=rk(A). In the case that A is a
null matrix, let I\/ﬁ =0, and l\i =l g. M® and N are orthogonal projection matrices

overQg, and orthogonality is taken with respectdo
Definition of G. Let G be &lgx[s matrix defined by

T .
Gig) = T =
0 #i

Remark e is the residual in the long regression after regression of y ol ¥ the

set of higher nodes at which these residuals are not identically zero. The
circumstances in which some of the residuals are identically zero is discussed in
83(e). Usually[1g=Ih. Qg is the dataspace of the short regressiois.a vector
containing the “pattern” of the residuals, andontains the “magnitudes” in the sense
of 83(c). G is a matrix which in combination with C will form the linear contrasts
GC-1 which transform the long regression into the short regressidGC& is a

projection matrix, as the following lemma shows. The short regression can therefore
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be seen as a projection of the long regression onto the columrs dh@ ith column
of GT has zero everywhere except in the radiation of node i, and there it is

proportional to g, the residuals in the long regression of y on X. This projection
ensures that all the residuals after regression oALEQnust lie in the same space,

and so must be proportional, within each radiationgfo e
Lemmal?7. GCIGT =Igand GCIS=0

Proof. The first part is obvious in view of the diagonality of C and the definition of
G. C and S are diagonal matrices according to the partitiomlg dfrom the
definition of G,
Gjj = 0 iZ]
T .
(GC'ls)ii U &i) C_]'S(i)i 1 g
Hence if §C-1S=0, then so does G&S. But from the definition of e,J€-1S equals

(Ly)TNSé“_X TCls= (Ly)TC'lN;LX S. However, @M S=0 and so the second part

of the lemma is proved.

Definition of X9. Let X9 be aI'ngrk(GC'lLX) matrix defined such that the columns

of X9 span the same subspace as those oflGC X9 may be a null matrix.

Remark This definition is needed in case &iCX is not of full rank even though LX

is. See 83(e). ¥GC-1LX will satisfy the definition when GGLX is of full rank.

Lemmal8. If Ais allixna matrix of full rank, and; and A are linearly independent,

t
then LNyya = N§|LA L.
Proof. The lemma will be true if

t
LM1ga =Mgjia L
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which we now prove. 1¢(|A) and Q.t|Nt1t A) span the same subspacexfso it

t t
follows that Muiya :M1t t . The LHS therefore equals

Ny A
L(14N; A)EitTV_11t 0 gl(lmt A) Tv-L
1 t t 1 B
THYE 0 ATNLTVAINRAD T

t
which using L1t=0 from Lemma 12, its consequence that} &L, and the block

diagonality of the inverse of the partitioned matrix, reduces to

t t t
LA(A TN1; TV-INg, A)-L(Ny; A)TV-L (AT)

S

Because (S|LA) and (S%\LA) span the same subspaceXy MZ“_A :Msu\éLA , and
so the RHS equals

$TC1s 0 Hl

LAY LA) TC-1L
(SINS )H 0 ATLTNITCING AL (SINSLA) TC

Using 9 C-1L=0 from Lemma 14 , its consequence th%tl_N:L, and the block

diagonality of the inverse of the partitioned matrix, this equals
LA(ATLTCILA)-{(LA)TCIL (A8)

It will now be shown piecewise that (A7) equals (A8) thus proving the lemma. Both
formulae begin with LA. The matrix inverses that follow are equal because

t t
LTC1L=Nz; TV-INy; by Lemma 16, and the remaining portions are equal for the

t t t )
same reason and because N/-IN1; =N1; TV-1. This completes the proof.
Lemmal9. Conditional ort, A _ N(O,N?(g ).

Proof. First it is established that the support of the probability distribution of e is the

subspace of2s orthogonal to (S|LX), and that there the density is proportional to

exp(—% elC-le)
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t t t t
Let n=Nzx €, andp=M1;x €. As the cross-product yx TV-IN1x equals zero, the

density ofe is proportional to
1 1 t t 1 t t
expt5 €TV-1e) = exp(—7 eTNyyx TV-IN1yx € =5 eTM1yx TV-IMyyx €)
which in turn yields
- L Ty -1 gTy-1
=exp(-2 n'Vin-3 ¢'V-9)

Hence the density of is zero on the subspace orthogonall{X{, where it is

proportional to
_L Ty I _LiTyl
exp(-=2 n'V-n) [exp(-2¢'V-9) dd

and so it is also proportional simply to
LTyl
exp(-2 n'V-n)
e=Ln, so the density of e will be as claimed if
t
nTV-ln =elCle where Mx n=n and &Ln
which we now prove. Over the relevant subspace, the LHS is equal to
t t
NTN1yx TV-IN1yxn
and the RHS equals
t t
NTN1yx TLTCILNyx n
t
By Lemma 18, LNyx :NZH_X L, so the RHS equals
TLTNg « C-INS
N'L'Ngix C*Ngjx Ln

But Lemma 16 shows that
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t t
Nigx TV-INggx = LTNgx CINgjx L
and so the two sides are equal, completing the proof of the distribution of e.

We now proceed to find the distributionXxaf From the definition of andA, we have
&) Con @ =M T Cay To = A i g

hence
elCle=AT\, and so exp(% elCle)= exp(—% ATA)

To derive the distribution of, it remains to establish over what subse@gthe
density is non-zero, and what the Jacobian of the transformation is. The subget of
is those values df corresponding to an e belonging to the subspa€k défined by

Mgu_x e=0. As gj)=A1(j) this condition becomes
(S|ILX)TCL cokm g {Aitp} =0
But STC-1GT=0 by Lemma 17, so (S)l)g) 1()=0 and therefore S may be dropped.

Writing (LX) for the submatrix of LX containing only those rows indexedigy

this condition is equivalent to

Z M(LX) ) CiyTy =0, or (GECILX)TA =0, hence to (YTA =0

im p
The subset of2q over which the density of is defined conditional onis therefore a
subspace defined by @TA=0. Conditional ort, gj=A()T( implies that ded\, so

there is no non-constant term in the Jacobian. We have now established that the

density ofA is proportional to

expE3 ATA)
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where I\/f(g A=0. A random variable with distributidﬂ(O,Nig ) has density
proportional to exp(% &T€) where I\&g &=0, and zero elsewhere. But this is the

same density a§ and so\ too is distributed aBI(O,Nig ). This completes the proof.

Remark The following theorem shows that the short regression is analytically valid
in the case where the working phylogeny is the true phylogenyy akinown and
taken as fixed at its true value. It does this by giving the probability densi&gof N
GC-1Ly, the residual vector after regression of-&@ on GC1LX, based on the

whole process of computing the long regression, conditioning and using the
random linear contrasts Go form the short regression. The theorem shows that
conditional or, the probability density is the same as it would have been#L.G&C
were taken as fixed, and the residual's density calculated on the basis of @n error
distributed aN(0,l g) in the regressiondgGC-1LXB+. This equivalence of the
residual density in the two cases establishes the exactness of the short regression for
testing for the addition of G&LZ. Note that conditional on, GC1LZ is fixed and

not random.
Theoren?. Conditional ort

Ny GCLLy _ N(O,Nyg)

Proof. We show that &g A=A, and then the theorem follows immediately from

Lemma 19. We begin with the identity
0 s il S 0
Ly = L( (LX) L+ €)= Mg)Lx L( (LX) Hte ) + Ngjx L( (1e]X) L+ €)

L1=0 from Lemma 12. We also know tha&[}k Le=e by definition, and gILX

annihilates LX while I\Z|LX preserves it. Hence these expressions also equal

M‘°§|LX L(XB+e) + e
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Pre-multiplying by GG yields
GClLy = GCIMg x L(XB+e) + GCle

N?(g GCL(S|LX)=0 because G&S=0 by Lemma 17, and because the columns®f X
and the columns of G&_X span the same subspac&Xf Expansion of the
projection matrix therefore shows thaid,\l annihilates the first term of the RHS.

Further, calculation shows that @&=A. Hence pre-multiplying byilg gives
Nyg GCILy = Nyg A

But Nig A=A because by Lemma 19 the density\a$ zero except over the subspace

where this is true. This completes the proof.

Definition of T, nr. Let nr=ng-np-ng. Let T be &lsxnt matrix of full rank which
satisfies TC-1(S|G)=0, and rk(T|S|&)=ns. If ngnh-ng=0, then T will be a null

matrix.

Remark T will be null only when the working phylogeny is binary and as a

consequence the phylogenetic regression and the standard regression are the same.

Remark The following theorem shows that the long regression with T is equivalent

to the short regression. The LHS is the sum of squares of the long regression,
concentrated for the parameter vectors associated with LX, S and T. The RHS is the
residual sum of squares of the short regression, concentrated for the parameter vectors
associated with GELX. The introduction of A allows for possible collinearity

between T and LX, or in other words that rRfxrk(LX).

TheorenB. Let A be d1gxrk(S|LX|T) matrix of full rank whose columns span the

same subspace ©fs as the columns of (S|LX|T). Then conditionatton

(Ly-Lzy)" N&T CING(Ly-LZy)
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T gT,-1 g
= (GClLy-GC1LZy) Nxo lg Nxo(GClLy-GC1LZy)
Proof. The statement of the theorem will be true if
NA' CINA =C1G' N%' 1y N%e GCL
which by definition of the projection matrices simplifies to

cINS =c1G' N el

which we now prove. LetgFnsrk(S|T|LX)=ns-rk(A). By Lemma 3, there exists a
MsxnR matrix R of full rank, which satisfies rk(A|RK(S|T|LX|R)=r, and
ATC-1R=0 so that (S|T|LX)C-1R=0. As rk(S|T|®)=ns, and GC-}(S|T)=0 from
Lemma 17 and construction of T, by Lemma 4 there exiBtg<ar matrix Q of full

rank such that R=GQ.

By Lemma 2 the LHS equalsh&/ls,i , Which can in turn be written as
CIR(RTCIRyIRTC1

Substituting GQ for R, and as G&GT=I4 by Lemma 17, this equals

C'lGTQ (QTG ClGTQ)'lQTG cl

ClGTQ(QTQ)'lQTG cl

ClGTM GC1
To prove the theorem, it therefore remains to show that
g T.9
C1lGTMg GCl=ClG NxsGC1

By Lemma 2, I\% :Nig and so this equality will hold, only provided ri€R)=n,
and @X9=0. QN(GCILX)=RTC1LX, which equals zero by the definition of R, and

because the columns ofXnd those of GELX span the same subspaceXy
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QTX9=0 too. Now GClis algxMs matrix of full rank, and by construction of R,
rk(S|T|ILX|R>xns. Hence

tk(GCY(S|TILX|R)Frk(GC-1S|GCIT|GCILX|GCIR)ENg

As GC1S=0 by Lemma 17 and G&T=0 by construction of T, and
GC1R=GC1G'Q=Q by Lemma 17, it follows that

rk(GCILX|Q)=ng,
and so rk(X|Q)=ng too, as required. This completes the proof of the theorem.

Definition of F. If ais dlgx1 vector, B is aflgxng matrix of full rank, m<ng, D is
algxnp matrix of full rank, +np<ng, rk(B|D)=rk(B)+rk(D), and 5I§|D az0, then
let F(a,B,D) equal

g g

alM™ a alM~ _a
NgD ) NgD
g - g
aTNB|Da aTNg a- airM a
B NgD

Definition of ZC°. Let Z be a matrix of full rank formed by deleting columns from Z
in such a way that (YGC1LZz) is of full rank and that
rk(X9|GC1LZC)=rk(X9|GC1LZ). Z¢ may be a null matrix.

Definition of my, mz. Let mx=rk(X9), and ny=rk(Z°).

Definitionof I'. Letl" be defined almost surely aglgxmz random matrix whose

elements are independently distributed in normal distributions, with zero mean, and

T -1
_ e(i)lc(i)e(i)
(&) Ciy (LZO) ;)2

Var(jj) =

This definition fails when the denominator is zero for any i,).

Definition of W. LetW be allgxmz random matrix defined almost surely by
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Wiy = Tij(LZ%); iM g j=1..my
0 i p-Mg, j=1..ny

Remark W is the random alternative to Z of the randomization test described in

83(c).

Definition of ®1, @, ®. Let®1 be a randonilgxnz matrix defined byb1=GC1w,
and let®, be a randonflgx(ng-mx-mz) matrix whose elements have normal
distributions with zero mean and unit variance, independent of each otherfand of

Let d=(Pq|Dy).

LemmaZ20. ®jj have independent normal distributions with zero mean and unit

variance.

Proof. Independence and zero mean followdarbecausabj; equals a constant
timesrlijj. Unit variance follows because that constant equals the inverse of the square

root of the variance dfjj. ®, has the required distribution by definition.

Remark The following theorem shows that the randomization test described in 83(c)
is the same test as the short regression. Formally, the randomization test is to find the

p-value for the null hypothesis thatO by finding
Pr{F(GC1Ly,X9,GC1W)>F(GC1lLy,X9,GC1LZO)},

in which the substitution d¥ for LZC is the only difference between the two sides of
the inequality. If this probability is low, it implies that randomly selected explanatory
variables would rarely explain as much of the remaining variation in Ly &sl&&s.

The short regression's test statistic would also have an F-distribution wvéthdn

ng—mx—mz degrees of freedom

Theoren¥. Conditional on y, F(GELy,X9,GC1W) has an F-distribution with

and y—mx—mz degrees of freedom
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Proof. For brevity, letaGC-lLy, B=X9. By the definition of F and the relationship
between the F-distribution and the Beta distribution, and noting thadG@;, it

suffices to show that

g
NBCD]_

alM

) aTNgBa
has a Beta distribution with mand g—mx—-mz degrees of freedom. For a definition
of the Beta distribution, and its relationship to the F distribution, see Abramowitz &
Stegun (1965, 26.5.1, 26.5.2 and 26.5.28). We apply Gram-Schmidt
orthogonalization (see for example Kingman and Taylor 1966, page 201) to the
columns of lﬂ(d)ﬂd)z) in order, yielding d&lgx(ng-mx-mz) random matrix\
conformally partitioned into/X1|//\2). There is still ambiguity in the definition &¥,
up to multiplication of each column 1. We complete the definition &f by
requiring that the inner product of each pair of corresponding columns from
NgB(q31|<D2) and/\ should be positive. Gram-Schmidt orthogonalization ensures that
the columns of\ are mutually orthogonal, and are of unit length. Further, that the
first k columns of\, k=1,2, .. rk{\) span the same subspace as the first k columns of

NgB(q31|<D2) . By virtue of its construction therefore satisfies
ATA=1,ATB =0,

Because of symmetry between the column®,odind the spherical symmetry of the

normal distribution whichb has by virtue of Lemma 20, the distribution/ogatisfies

freqn) O 1 ATA=], ATB=0

0 0.W.

By construction/\; spans the same subspace %SDI}I so there exists a random

mzxmz matrix ¢ defined by\1 :N% ®; ¢. Now
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g

9 T T T
Yo, ~ Macl =M ¢ DA A Y HCHTAL =\
gP1

M

and so

T
aT/\ll\la

aTN%a

Let d be the random grmx)x1 vector defined by=ATa, and let @_I:/\I a. The
distribution of d iang_mX is spherically symmetrical with fixed IengtFiI‘agB a.

The volume element of d for which & a constant is the surface of agimx—mz)
sphere of radiuslaTNgBa -d'd, and the volume element of vectorsdch that Eldl
equals a constant is the surface of ansphere of radiu dIdl . Hence the density

of dI dy , which equals ®\1A1Ta, is proportional to

m (Ng-My-m
Adld, 7 B farna-da, ™™

and so the density of q is proportional to

mz/2 (ng-mx-mgz)/2
g < (1q) °

which is the Beta distribution with zrand g—mx-mz degrees of freedom

(Abramowitz & Stegun 1965, 26.5.1 and 26.5.2), as required.
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