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Four methods have been proposed that can be used to test for associations between the states of discrete
characters in cross-species data and that do not suffer from non-independence due to overcounting of
data points. The tests are those of Ridley (1983), Burt (1989), Grafen (1989), and a new test called the
ICDE test. The aim of the paper is to measure the Type I error rates for these methods with simulated
null distributions of discrete characters. The null data is generated by a model of discrete character
evolution, using three shapes of phylogeny: tetratomous, dichotomous, and realistic. Ridley’s and Burt’s
tests are both reasonably valid with the realistic phylogeny but biased with the tetratomous and
dichotomous phylogenies. Grafen’s phylogenetic regression is reasonably valid with all tree shapes. One
version of the ICDE test was valid, the other less so. The invalid results are explained in terms of two
kinds of statistical non-independence that arise in discrete data: non-independence due to the
reconstruction of character states by parsimony, and the ‘‘family problem’’ in which similar patterns
are found in null data in many separate radiations because all the radiations began from the same
ancestral state.
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1. Introduction

A number of methods have been proposed to test
for associations between the states of discrete
characters in cross-species data. An analysis of
their statistical properties requires, as Ridley &
Grafen (1996) argued, measuring their Type I
and Type II error rates. We (Grafen & Ridley,
1996a) have devised a model of discrete character
evolution that can generate null and non-null
simulated datasets and the present paper will use
simulated null datasets to look at the validity of four
proposed comparative methods for discrete data.
Some other methods have also been proposed but can
be ruled out, as Grafen & Ridley (1996a) discussed,
because they find more datapoints in radiations with
more species than in radiations with less species; they
therefore suffer from non-independence, of a kind
analogous to pseudoreplication. The work that
follows confines itself to the simplest case of two
discrete characters with two states each (A/a and
B/b).

2. The Tests

2.1.  

We looked at the significance of naive species
counts, using a chi-squared calculated from the
number of species with each pair of character states.
The results provide a useful point of comparison with
the other methods. The test was performed by a
Mathematica program.

2.2.     () 

This is the test proposed by Ridley (1983) and
formalised by Grafen & Ridley (in prep. a). We shall
call the test the independent character evolutions test
or ICE test, because it is based on inferring the
locations in the phylogenetic tree at which characters
changed. The test begins with a known distribution of
character states among the species, and a working
phylogeny (Grafen, 1989) of those species. The first
step is to reconstruct what we call the ‘‘character
change tree’’; a contingency table test (x2, G-test, or
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Fisher exact) is then performed on the character
changes recognized in that tree. The character change
tree is reconstructed by parsimony; it is a tree in which
every uniform region in the phylogeny is collapsed
into a single node: the result is a tree showing only the
character states that there have been changes among.
Any one dataset usually has more than one equally
parsimonious reconstruction, and more than one
character change tree. In this study we dealt with the
problem by calculating z for each reconstruction,
averaging z, and then finding the p-value for that z
(see Section 4 below). Ridley (1983) and Grafen &
Ridley (in prep. a) provide further details about the
method. It was implemented by a program written in
Mathematica (Wolfram, 1988).

2.3.   

Grafen (1989) originally devised and justified the
phylogenetic regression for continuous characters;
but it can be applied to discrete characters by entering
them in 0/1 form in the regression. The method
regresses the values of the two characters on each
other within each radiation in the phylogeny and
combines the regressions into the ‘‘phylogenetic
regression’’; each radiation contributes one datapoint.
Grafen (1989) should be consulted to see how the
method works. Because the justification there is for
continuous characters, it is uncertain whether it will
retain its validity with discrete data; the simulations
below will reveal whether it does in particular cases.
The phylogenetic regression is implemented by a
program written in GLIM (Numerical Algorithms
Group, 1987).

2.4. ’ 

Burt (1989) was also mainly concerned with
continuous characters. He provides, for continuous
characters, a valuable method that makes no
assumptions about branch lengths, and which (with
the replacement of the sign of a covariance with the
sign of a Spearman rank correlation) would be a truly
nonparametric method for two continuous variables
and a phylogeny with unresolved polytomies.
Although the extension to discrete characters is only
a brief and incomplete suggestion in the original
paper, the logic and procedure are clear enough. In
Burt’s words, ‘‘phylogenetically independent con-
trasts are again identified, with the proviso that each
one contains both values for both variables.’’ We start
at the terminal taxa, or tips, of the phylogeny and
work up until we reach a node below which both
characters vary. The species below that ‘‘contrast’’
node contribute only to that node and are excluded
from other comparisons. Burt draws a path

connecting the species below the contrast node, and
defines nodes as ‘‘phylogenetically independent’’ if
their ‘‘paths do not cross at any point.’’

Once the nodes providing independent contrasts
have been found, Burt’s test lists the contingency
tables below the nodes, finds the sign of each, and
executes a sign test. There are two ways to find the
sign. Burt counted the numbers of the species in the
contingency table: there are four numbers, nAB, naB,
nAb, nab, for two binary characters. He then found the
sign of each contingency table by the sign of
(nABnab-nAbnaB); this is the first method of finding the
sign. It uses raw species numbers and there may be a
danger that large uniform blocks of phylogenetically
related species will be overweighted. The randomis-
ation scheme is designed to ensure the validity of the
test, but this extra weighting might be expected to
lead to reduced power. We therefore used a second
method, in which all non-zero entries in the
contingency table were reduced to one; these reduced
values of nAB, naB, nAb, nab are then all either one or
zero. The sign can then again be found using the sign
of (nABnab-nAbnaB). The two procedures are identical
except where there are non-zero entries in all four
corners of the contingency table (and at least one of
them is greater than one). Then Burt’s method can
have any sign, +, 0 or − according to the four
numbers, whereas the method we used, that reduces
all the non-zero values to one, will have sign 0). As
things turned out in this study, it would almost
certainly have made no difference which method we
used, because the simulated datasets contained hardly
any contingency tables with sign 0. The test was
implemented by a Mathematica program.

2.5.    

 () 

The ICDE test is described by Grafen & Ridley (in
prep. b). It treats the two characters separately and
for each character traces back from the terminal taxa
until it reaches the nodes below which the character
varies. The variation below each of these nodes has
evolved independently. A contingency table is
compiled for the character states below each such
node. There are two ways of compiling the table,
rather like the two ways of finding the contingency
table sign in Burt’s test. The two result in two versions
of the ICDE test. The contingency table for a node
initially contains the numbers of species below the
node that have the four pairs of character states. One
way is to retain the contingency tables with numbers
of species; this is the ‘‘CSP’’ (for ‘‘counting species’’)
version of the ICDE test. The other way is to reduce
all non-zero values in the contingency tables to one;
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this is the ‘‘C1’’ (counting one) version of the ICDE
test. The motivation behind the C1 method is not to
give too much weight to large uniform taxa. Note,
however, that the randomisation procedure (to be
discussed shortly) is designed to avoid phylogenetic
overcounting, in both CSP and C1. These contin-
gency tables are then added together, and a test
statistic calculated from that summed table. A
randomisation test is then performed to find the
significance of that test statistic. The randomisation is
applied independently to the separate contingency
tables, and independently to the two characters. With
equal probabilities it either switches or does not
switch the two character states of a character in the
contingency table for a node. These randomised
contingency tables are summed and the test statistic
calculated to provide a distribution of values with
which the observed test statistic can be compared. We
have obtained Type I error rates for both versions of
the ICDE test. The main feature of the method is that
it exploits the differences in the character states below
the nodes, without attempting to reconstruct the
ancestral character states at or above these nodes.
This contrasts with the ICE test and other tests such
as Maddison’s (1990), which rely on reconstructed
ancestral states through the tree. In this study the
ICDE test was implemented using another GLIM
program.

3. Null Data Generation

We looked at the behaviour of the methods when
they analysed simulated null data. We generated null
data using Grafen & Ridley’s (1996a) model of
discrete character evolution. This section gives details
of the parameters, which are of technical interest. The
general reader only needs to know that null data with
a phylogenetic structure was generated: however,
such a reader might note the main feature of our
model (next paragraph), the shapes of phylogeny
(next but one paragraph), and perhaps the realism of
the datasets (penultimate paragraph, at end of
section).

Grafen & Ridley’s (1996a) model produces
a pattern of states for two observed characters (A
and B). The states of A and B, however, are
controlled by evolution in two unobserved characters
(C and D); the state of C determines the state of
A and the state of D determines that of B. In the
null case there is no causal relation between the
unobserved characters and C and D each evolve
through the phylogeny in the manner of a discrete
branching Markov process in continuous time. The
importance of the hidden variables is that they allow

the probability of change in A/a and in B/b to
vary between different regions of the tree. Read &
Nee (1995) and Grafen & Ridley (1996a) argue this
feature is biologically required. The feature is realized
in the model by means of multiple states in the
unobserved characters corresponding to each of the
two states of the observed characters.

We studied three shapes of phylogeny. The number
of species in each was 256. The three shapes are as
follows. (i) tetratomous: the 256 (44) species are
arranged in groupings of four at four hierarchical
levels. (ii) dichotomous: all branches are dichoto-
mous. The shape is a compatible dichotomous
refinement of the tetratomous tree, obtained by the
method described in Grafen & Ridley (1996a) for data
generation. The tree is symmetrical on a broad scale
but the resolution of each tetratomy may be
asymmetrical or symmetrical. The exact tree is given
in the Appendix to this paper. (iii) ‘‘Hennig’’: the
phylogeny was intended to have a relatively realistic
amount of asymmetry and proportions of dichoto-
mous and polytomous nodes. It was abstracted from
Hennig’s (1981) phylogeny of the insects: a level that
had approximately 256 taxa was selected and the
‘‘Hennig’’ phylogeny in this paper is the branching
pattern from that level back to the common ancestor
of the insects. Some manipulation was required to
produce a tree with exactly 256 species. It is not
intended to correspond precisely to any one real
phylogeny but merely to be approximately realistic;
the perfectly symmetric tetratomous phylogeny is
unrealistic and the perfectly dichotomous phylogeny
implies a precision of knowledge that is rarely
available. The Hennig tree we used is also given in the
Appendix.

In the specific version of the model used in this
study, both C and D had six states although A and
B had only two each; this enables the multiple
determination of the observed character states. The
transition matrix was the matrix exponential of
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T 1
Frequency distributions for the significances of the six tests, with null data

simulated through three tree shapes
P-values
from to Tetratomous Dichotomous Hennig E(360)

Species
0 0.001 33 22 61 0.36
0.001 0.01 21 20 15 3.24
0.01 0.025 15 8 18 5.4
0.025 0.05 17 13 9 9
0.05 0.1 16 17 17 18
0.1 0.25 29 33 19 54
0.25 0.75 103 109 63 180
0.75 0.9 42 52 23 54
0.9 0.95 22 26 18 18
0.95 0.975 16 18 13 9
0.975 0.99 16 16 18 5.4
0.99 0.999 15 12 33 3.24
0.999 1 15 14 53 0.36
Totals: 360 360 360 360.00

The ICE test
min mu max min mu max min mu max

0 0.001 0 0 0 1 1 1 1 1 1 0.36
0.001 0.01 0 2 5 1 1 1 3 4 6 3.24
0.01 0.025 0 2 5 0 0 0 6 6 10 5.4
0.025 0.05 3 2 5 6 6 6 7 9 14 9
0.05 0.1 2 4 9 3 3 4 16 21 24 18
0.1 0.25 8 11 14 6 6 5 43 54 60 54
0.25 0.75 24 37 46 27 29 31 173 178 166 180
0.75 0.9 20 25 36 32 31 29 57 47 48 54
0.9 0.95 20 23 20 27 26 26 25 18 16 18
0.95 0.975 13 16 33 30 30 30 13 10 5 9
0.975 0.99 22 26 37 29 30 30 9 8 7 5.4
0.99 0.999 63 82 70 78 77 77 7 4 3 3.24
0.999 1 185 130 80 120 120 120 0 0 0 0.36
Totals: 360 360 360 360 360 360 360 360 360 360.00

Phylogenetic regression
0 0.001 0 0 2 0.36
0.001 0.01 3 4 4 3.24
0.01 0.025 8 1 6 5.4
0.025 0.05 9 13 4 9
0.05 0.1 15 20 14 18
0.1 0.25 62 48 38 54
0.25 0.75 150 190 236 180
0.75 0.9 61 50 39 54
0.9 0.95 26 17 3 18
0.95 0.975 17 12 2 9
0.975 0.99 5 3 7 5.4
0.99 0.999 4 2 2 3.24
0.999 1 0 0 3 0.36
Totals 360 360 360 360.00

Burt’s test
min max min max min max

0 0.001 0 0 0 0 0 12 0.36
0.001 0.01 0 1 0 1 0 8 3.24
0.01 0.025 0 0 1 2 4 13 5.4
0.025 0.05 0 2 0 1 7 7 9
0.05 0.1 1 11 2 5 10 25 18
0.1 0.25 9 26 4 22 32 66 54
0.25 0.75 71 104 78 123 170 178 180
0.75 0.9 42 94 60 69 65 31 54
0.9 0.95 60 43 41 55 28 15 18
0.95 0.975 36 29 32 28 10 4 9
0.975 0.99 47 24 60 31 16 0 5.4
0.99 0.999 47 24 48 14 4 1 3.24
0.999 1 47 2 34 9 14 0 0.36
Totals 360 360 360 360 360 360 360.00

continued overleaf
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Table 1—continued

P-values
from to Tetratomous Dichotomous Hennig E(360)

The ICDE test: C1 version
0 0.001 0 0 0 0.36
0.001 0.01 0 0 4 3.24
0.01 0.025 2 3 6 5.4
0.025 0.05 9 5 8 9
0.05 0.1 12 6 14 18
0.1 0.25 30 47 58 54
0.25 0.75 147 175 162 180
0.75 0.9 61 61 66 54
0.9 0.95 35 31 21 18
0.95 0.975 22 18 15 9
0.975 0.99 17 8 5 5.4
0.99 0.999 23 5 0 3.24
0.999 1 2 1 1 0.36
Totals 360 360 360 360.00

The ICDE test: CSP version
0 0.001 1 0 0 0.36
0.001 0.01 3 1 3 3.24
0.01 0.025 3 3 5 5.4
0.025 0.05 4 7 13 9
0.05 0.1 17 16 11 18
0.1 0.25 67 51 54 54
0.25 0.75 196 181 186 180
0.75 0.9 44 81 58 54
0.9 0.95 15 14 17 18
0.95 0.975 7 3 6 9
0.975 0.99 3 1 6 5.4
0.99 0.999 0 2 1 3.24
0.999 1 0 0 0 0.36
Totals 360 360 360 360.00

There were 360 datasets for each tree shape, and the expected numbers for random data are given
in the E(360) column. Higher numbers in the lower half of the distribution mean the test is biased
against the ancestral state: the test finds too many results on the non-ancestral diagonal.

chance per unit time that a lineage in state 1 (top row)
leaves state 1 is proportional to 0.01 (the diagonal
element is 0.01, and is negative because it is a chance
of leaving that state). When it does leave state 1, the
lineage joins state 2. The chance that a lineage in state
2 (second row) leaves state 2 is proportional to 0.82.
In a fraction 0.2/0.82 of cases, the lineage joins state
1; in a fraction 0.6/0.82, the lineage joins state 3; while
in a fraction 0.02/0.82 the lineage joins state 4. This

transition matrix has two states, 1 and 6, that a
lineage rarely leaves once it has entered it. There is
considerable interchange between the other states.

The transition matrix for a character was operated
down a phylogeny, obtaining character states at each
node from the state of the parent node and the length
of the branch segment connecting them. The root was
always set to state (C=4, D=4). The branch lengths
were determined by establishing a ‘‘height’’ for each

T 2. z-values for the six tests scrutinised by null data in three tree shapes
Tree shapes

Test Tetratomy Dichotomy Hennig

ICE −2.2752 1.533 −2.2632 1.429 0.023752 1.050
ICDE C1 −0.53992 1.130 −0.28402 0.9693 −0.065882 1.007
ICDE CSP 0.093112 0.8871 −0.042022 0.8709 −0.0045842 0.9519
Phylogenetic

regression −0.065412 1.053 0.012012 0.9717 0.060292 0.9370
Burt −1.1532 1.052 −1.1622 1.046 −0.0018492 1.002
Species 0.27402 2.366 0.012842 1.985 −0.066962 3.144

The reader may like to bear in mind that the 95%, 99% and 99.9% confidence intervals for means
are 20.1033, 20.1358 and 20.1734, while for standard deviations they are (0.9269, 1.0731), (0.9045,
1.0967) and (0.8789, 1.1243). These confidence intervals are based on the z-scores truly coming from
a Normal distribution with a mean of zero and a standard deviation of one.
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node. The height of each node depended on the
number of species in the clade below the node, say n,
and was given by the natural logarithm of n, except
for the Hennig phylogeny where it was given by
(n−1). The duration of character evolution of a
character between two nodes with heights hm and hd

was

RATE*0 0hm

hR1
RHO

−0hd

hR1
RHO

1
where hR is the height of the root, and RATE and
RHO were constants chosen to produce a suitable
number of character changes with a suitable
distribution of those changes over the different
heights of the tree. For the tetratomous and
dichotomous cases, we used RATE=0.4,
RHO=1.0. For the Hennig case we used
RATE=3.6, RHO=1.0.

Once the underlying characters had been generated
for each species in the phylogeny, they were converted
to the observable characters. States 1, 2 and 4 of
character C determined state 1 of A, otherwise A was
in state 2. The same rule converted character D to
character B. The calculations were performed using a
Mathematica program. We generated 360 random
replicates per phylogeny.

The approximate realism of the parameter values is
indicated by the number of events in the phylogenies.
With the tetratomous, dichotomous, and Hennig
phylogenies, the mean number of character changes,
reconstructed by ICE, and standard deviation, were
29.64 (SD 4.777), 31.36 (SD 5.011), and 27.67 (SD
5.970) respectively, among the 256 species.

The extent of evolution and effects of the hidden
variables can be exhibited. The probability distri-
bution over the six states of the hidden variable C for
any one species is {0.0000222, 0.000794, 0.00710,
0.802, 0.182, 0.00797} for the tetratomous and
dichotomous trees. (The same probabilities apply to
the hidden variable D.) Thus, few species are in the
‘‘frozen’’ states 1 and 6, though those few are likely
to be concentrated as large blocks of species in a few
datasets. For the Hennigian phylogeny, the probabil-
ities are {0.00645, 0.0195, 0.0346, 0.395, 0.328, 0.216},
so here a sizeable fraction of species are in the frozen
states. The probability distributions for the four
combinations of states of the two observed variables
A and B are {{0.645, 0.158}, {0.158, 0.0387}} for
tetratomous and dichotomous cases, and {{0.177,
0.244}, {0.244, 0.335}} for the Hennigian case. These
probabilities are calculated analytically using matrix
exponentiation and the RATEs in the different
phylogenies.

4. Results

Table 1 gives the probability distributions of
one-tailed p-values for the four methods (and two
versions of the ICDE test), the species counts, and the
three phylogenetic shapes. For ICDE and the species
counts, the probability distributions are straightfor-
ward. For ICE, there is a mean (‘‘mu’’ in Table 1), a
max, and a min. The range of results arises because
there can be more than one minimum evolution
reconstruction (character change tree) for a dataset.
The average number of reconstructions 2 standard
deviation for the 360 data sets was 101.1 2 749.9 for
the tetratomy, 3.7642 7.652 for the dichotomy, and
31.692 176.7 for the Hennig phylogeny. The high
standard deviations arise from a few datasets with
very many reconstructions, the maximum being
13824, 128, and 3072 for the tetratomous, dichoto-
mous and Hennigian phylogenies, respectively. Each
phylogeny had the bulk of its datasets with 50 or
fewer reconstructions (297, 359, and 332 out of 360,
respectively). For Burt’s test the probability distri-
butions have a max and a min. The ‘‘min’’ is the
probability calculated by the test that a more extreme
result would have been observed by chance. The
‘‘max’’ is the probability that a more extreme or
equally extreme result would have been observed by
chance. The distributions are summarized as z-values
in Table 2.

5. Discussion

5.1.   

The distribution of p-values for species is grossly
invalid; there are far too many entries in the tails.
In the Hennig tree, for example, 220/360 datasets are
in the two 5% tails combined, as compared with an
expected frequency of 36/360. The simulations
reillustrate the point that ‘‘significance’’ tests with
species counts in phylogenetically structured data are
too likely to find significant results (Grafen, 1989).
The comparison of the species results with those for
the other tests show that those other tests are all
improvements, and have therefore at least some merit.
The only apparent exceptions are the ICE and Burt’s
tests, which with the dichotomous and tetratomous
trees have very asymmetric distributions. Here,
however, the tests would only sensibly be used if the
ancestral state favoured the hypothesis and the
relevant p-values are then in the top half of the
distribution. There they are very conservative in both
cases. The species count probability distributions are
unbiased; the average z-value is not significantly
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different from the correct value of zero (Table 2). It
is not expected that z will be biased. [Indeed the proof
in Grafen & Ridley (in prep. b) that the ICDE test is
unbiased also applies to species counts.]

5.2.   

The two main features of the results for the ICE test
in Tables 1 and 2 are its invalidity with dichotomous
and tetratomous phylogenies and its validity with the
Hennig phylogeny. Its invalidity is due to a kind of
non-independence discussed by Grafen & Ridley
(1996b) and Ridley & Grafen (1996). The ICE test
reconstructs character states throughout the tree by
parsimony. However, with parsimony it is impossible
for adjacent nodes to have the same reconstructed
character state. Suppose, for example, that a higher
node has been reconstructed to have the state AB.
This node has a number of neighboring nodes in the
character change tree. With parsimony, none of those
nodes can be AB; if one did it would have been
merged with the node in question. The neighboring
nodes can therefore only have the three different
states (Ab, aB, ab). This creates non-independence
because the nodes of the character change tree form
the entries of the contingency table from which a
chi-squared is calculated.

This kind of non-independence is particularly
vicious for the dichotomous and tetratomous
phylogenies because they produce relatively ‘‘star-
shaped’’ character change trees. A star-shaped char-
acter change tree has the ancestral state in the centre,
and all the other nodes are only one step away from
it. This contrasts with a ‘‘string’’ shaped character
change tree in which the nodes are arranged in a
chain, and there can be many steps from one node to
another. In a perfectly star shaped character change
tree all the changes in the tree are forced to be away
from the ancestral state; the ICE test is then highly
biased: it is conservative when the ancestral state
favours, but liberal when the ancestral state counts
against, the hypothesis (Table 1). In practice, if the
ancestral character state permeates the phylogeny, it
is only sensible to use the ICE test when the ancestral
character state favours the hypothesis under test.

Another way to understand the conservativeness of
the ICE test is as follows. Recall that reconstructions
in which adjacent nodes have the same state are
excluded. If these excluded reconstructions con-
tributed to each possible contingency table in the
same ratio as included states, then the p-values would
be valid. However, the excluded states are found
particularly in the extreme contingency tables,
(3,0,0,3) and (0,3,3,0). With the contingency table
(3,0,0,3) there are only two types (AB and ab) to be

allocated to all the nodes, and the chance that two
states picked at random are equal is two fifths.
Whereas, if we have a less extreme contingency table
such as (2,1,1,2) then there are four types being
allocated, and the corresponding chance is two
fifteenths. This argument shows that the lower the
p-value in an ICE test, the more conservative the
method is. Another consequence of the argument is
that the conservativeness is not expected to disappear
as a tree increases in size. In general, the probability
that a tree with data (2n,0,0,2n) will have two
adjacent nodes the same is always going to be
considerably greater than when the data is (n,n,n,n).

The bias disappears, and the probability distri-
bution transforms into validity, when the data are
generated through the Hennig phylogeny. The
character change tree is less star shaped with the
Hennig data, and the ancestral state’s sphere of
influence is reduced. Now it is more likely that there
is a change away from the ancestral state high enough
up in the tree for changes back to the ancestral state
lower in the phylogeny to be recognized in the
parsimonious reconstruction. There are two related
effects at work to make the character change tree less
stellar. One is the asymmetry of the Hennig tree; the
other is that we used a different height rule ((n−1)
rather than logen) and higher value (3.6 rather than
0.4—a nine-fold increase) for the rate of evolution in
the Hennig data generation process (see Section 3:
‘‘Null data generation’’). The higher rate was needed
to produce an approximately similar number of
reconstructed evolutionary events as in the dichoto-
mous and tetratomous trees, given that all trees were
to have the same number (256) of species. The
comparison among tree shapes is therefore partly
confounded by the difference in rate: and it may be
that with the same rate as the Hennig tree, the ICE
test would be valid for the dichotomous and
tetratomous trees too. However, the Hennig rate gives
an unrealistic number and distribution of changes
with the parameter values used for the dichotomous
and tetratomous trees. There is a trade-off between
the theoretical interest of the comparison between tree
shapes at a constant rate and the biological interest
of the comparison among trees for a similar, realistic
number and distribution of events. We have
concentrated on the latter purpose in this paper.

The underlying variable that controls the behaviour
of the test is the shape of the character change tree:
for a similar number of events, the character change
tree is less stellar for the Hennig, than the
dichotomous and tetratomous, data. We have not
explored the interesting question of how the validity
of the ICE test can be tuned by varying the character
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change tree’s shape. With the perfect star it is
invalid, and some way toward the full string the test
comes to behave itself. In between there will be
character change trees with a number of central
nodes, each of which acts in the same manner as the
single central node in a perfect star. They all force
changes to be away from their state. In the case of a
double star, with two central nodes that are joined to
each other, the two central nodes must have different
states. The results will be forced disproportionately
into two sets made up of the three states that are
complementary to those of the two central nodes;
there will then be far too many contingency tables in
the tails. There will also be complicated results due to
the interaction of triple stars, double stars with a
string in the middle, and so on. Our simulations
provided several hints of the rich possibilities in
varying tree shape. Pursuing these hints may allow us
to discover practical rules of the form ‘‘The ICE test
has approximately correct Type I error rates provided
either (i) the character change tree is stellar but the
hub state supports the hypothesis or (ii) the character
change tree is sufficiently non-stellar’’. The crucial
question is how to measure stellarity.

5.3.   

The main features of the results (Tables 1 and 2) are
that the frequency distributions of z-values have
means and standard deviations that are within the
95% confidence limits around the true values. The
results with none of the trees are significantly biased,
and the standard deviations of 21.05, 0.97, and 0.94
are within the range (0.88, 1.12) which are the 95%
confidence limits around the true value of one. This
result is expected from the second order theory of the
phylogenetic regression (Grafen, 1989).

However, the distribution of z can deviate from
Normal, as Table 1 reveals for the Hennig phylogeny.
The standard deviation for z is correct, but this is
attained by having a high number in the middle class
(236, cf. the 180 expected) and too many in both tails
(at and beyond 1%), compensated by a deficiency in
between. The non-Normality arises from the data’s
discreteness, which gives the error a two-point distri-
bution, and the deviation will decrease for conven-
tional Central Limit Theorem reasons, as sample size
increases. The deviation implies that p-values more
extreme than a threshold of 5% may not be as
significant as they appear with this data generation
process. Also, we do not know what the threshold
would be with different phylogenies or models of
character change. However, the satisfactory means
and variances do suggest that the phylogenetic regres-
sion is unlikely to be far in error with discrete data.

The results are in one respect not as good as they
may appear. We fixed the value of rho, and the
branch lengths, at their correct values. Rho=1 for all
tree sizes; but the branch lengths differed because of
the (n−1) height rule in the Hennig tree and logen
rule in the dichotomous and tetratomous tree (Section
3). In real applications, branch lengths are unknown
and the phylogenetic regression program itself makes
a maximum likelihood estimate of, or the biologist
specifies, a value of rho, and neither method will
normally supply as informed a value as we were able
to—because we knew the data generation process.
The valid results in Table 1, therefore, do not rule out
the possibility (indeed the probability) of difficulties in
estimating rho and branch lengths in some real cases.
Further work could easily be done on the matter,
because any branch lengths can be used in the test,
and its validity could therefore be investigated across
whatever range of branch lengths the investigator was
interested in. Our reason for fixing the correct value
of rho was to focus on a direct comparison between
continuous and discrete data, to see whether
discreteness alone was enough to invalidate substan-
tially the phylogenetic regression; in our simulations
it did not.

The influence of branch lengths is an interesting
area of difference between discrete and continuous
methods. For continuous data, all methods except
Burt’s rely on branch lengths and the first step is to
show that a method works properly when the branch
lengths are right. That is the first step we have taken
here. A possible second step is then to compare
methods that succeed when the branch lengths are
right, to investigate how robust they are to error in
the phylogeny or branch lengths. For discrete data,
the tests do not have to depend on branch lengths.
Some tests will not, others will, in ways that may not
be immediately obvious. The phylogenetic regression,
the ICDE test, and Burt’s test (with discrete data)
depend on branch length assumptions either in their
execution, or justification, or both. The validity of the
ICE test, however, may not depend on branch lengths
in either its execution or its justification, and in that
respect it differs from all the other proposed tests for
discrete, and all except Burt’s tests for continuous,
data. Harvey & Pagel (1991) and Pagel (1994)
interpreted the ICE test in terms of branch length
assumptions; but we disregard that interpretation.

5.4. ’  

5.4.1. Comparison of results for Hennig phylogeny and
those for dichotomous and binary phylogenies

The results have two main features to discuss, the
invalidity of the test in the tetratomous and



(a) (b) (c)
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dichotomous phylogenies, and its validity with the
more realistic Hennig phylogeny. The results can be
understood in terms of another kind of non-indepen-
dence discussed by Grafen & Ridley (1996b) and
Ridley & Grafen (1996); we call it the family problem.
Burt’s test finds variable nodes by tracing up from the
terminal taxa until it reaches a node below which both
characters vary. These nodes can be of three kinds
(Fig. 1). Below the node each character will have
changed only once. Suppose the ancestral state of the
node is AB. If the characters change in separate
branches that are not below one another, the species
below the node will produce a contingency table
containing species with the character states AB, Ab,
and aB. If the changes happen in successive branches
in a lineage, the contingency table will have ab, and
either Ab or aB, and maybe some unchanged AB
descended from the ancestor. Any character state may
be found below the node, but Grafen & Ridley
(1996b) demonstrate that there is a bias in favour of
nodes containing the species with single changes from
the ancestor and against species containing the double
change. Contingency tables with entries on the
‘‘non-ancestral’’ diagonal are more frequent than
those with entries on the ‘‘ancestral’’ diagonal. It will
be convenient to discuss the results in terms of the
sign of the contingency table. We stay with the
convention that the ancestral state is AB. Then a
contingency table for a radiation that contains some
species in the ancestral character state and other
species that have a single change from that state will
be of form x, x, x,0. Let the values of the four entries
in general be nAB, nAb, naB, and nab; the sign of
(nABnab-nAbnaB) is then negative. A contingency table

containing species in the ancestral state and with a
double change from the ancestral state will have a
positive sign. The extent of the bias depends on the
mix of variable nodes of the three sorts in Fig. 1. The
‘‘scattered’’ sort [Fig. 1(c)] has the worst bias. It
always generates a contingency table in which there
are no species with a double change; its sign has to
be negative.

The invalidity with tetratomous and dichotomous
phylogenies exists because, in our datasets, most of
the doubly variable nodes were of the Fig. 1(c) type.
We inspected a number of datasets to find out which
comparisons the test was using and in the few we
looked at, nearly all the comparisons were of the
scattered Fig. 1(c) type; we found no nodes in which
one character changed above another to produce a (x,
0, 0, x) contingency table (where the ancestral state
is either ab or AB and x is any number bigger than
zero). The reason is the rate of change in the data
generation. A high rate—probably an unrealistically
high rate—would be required to obtain the full array
of Fig. 1; in our data generation the rate was lower.
When the rate is low, nodes like Fig. 1(c) become
relatively common compared with the Fig. 1(a) and
Fig. 1(b) node types. The rate we used was not
unrealistically low; there were an average of about
8–10 doubly variable nodes in the 256 species tree. No
method could sensibly excuse itself on the grounds
that it was not designed to handle this kind of rate of
change.

In the datasets we analysed, some of the positive
contingency tables did arise by double changes within
the node [like Fig. 1(a) and (b)]. But most of them
arose when a character had changed between the
ancestor of the tree as a whole and the local node:
then a single change in each character produces a
contingency table on the ancestral diagonal for the
tree as a whole (though locally it is the non-ancestral
diagonal). For example, if the ancestral state for the
whole tree is AB and there has been a change above
a doubly variable node to Ab, then the two changes
will generate ab and AB species. The contingency
table for the node either contains AB, Ab, and ab (if
some of the descendants retain the locally ancestral
state) or AB and ab alone (if none do): the sign is
positive.

The degree of bias in Burt’s test therefore depends
on the numbers of doubly variable nodes above which
there has been either a change, or no change, from the
ancestral state. The former produce positive signs; the
latter negative. In the dichotomous and tetratomous
phylogenies the latter predominate and invalidate the
test. The Hennig phylogeny is more asymmetric, or
‘‘ladder-like’’, and doubly variable nodes are more

F. 1. Three kinds of node below which both characters vary.
The line indicates a change in one of the characters (e.g., A/a) and
the squashed circle a change in the other (B/b). (a) Both characters
vary immediately below the same node. The category includes the
case in which both characters change in the same branch as well
as the illustrated case with changes in sister branches. (b) Staggered
variation. The node at which one character varies is above the node
at which the other character varies. The category includes the case
in which the change below the high node is in the long branch as
well as the illustrated case: either way there is variation in the
character at the top node. (c) Scattered variation. The two
characters vary in different lower branches that do not [as in (a)]
connect directly to the same node. Only the elemental branches of
the three patterns are shown: any number of uniform species could
be added to each.
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often beneath a branch containing a change from the
ancestral state of the tree (the same process makes the
character change tree more string-like, as discussed in
relation to the ICE test above). There is now a
balance between about half the doubly variable nodes
having a local ancestor that is on the non-ancestral
and half on the ancestral diagonal. The probability
distribution with null data is then more or less
symmetric and has valid frequencies (Table 1). The
comparison between the two shapes of phylogeny
reveals the workings of the family problem. Burt’s test
treats the states above the doubly variable nodes as
if they were randomised. In reality they will not be,
but they can be more or less so, and the test is
proportionally more or less valid. In the tetratomous
and dichotomous phylogenies the family problem is
strong, in the Hennig phylogeny it is relaxed.

Burt’s test does not owe its validity with the Hennig
phylogeny to the reasons that originally inspired the
test. With continuous data, the slope of a relation
between two variables within a node can be +, 0, or
−. The test aimed to test the significance of a relation
by seeing whether the slopes were similar in many
nodes. If there were no association, there would be a
random distribution of slopes. However, with the
Hennig phylogeny and discrete data, the distribution
of signs do not have this source. Most of the
contingency tables are constrained to (tend to) have
the sign of the diagonal of the locally non-ancestral
character states. The valid behaviour results when
half the signs are + and half are − because the
locally ancestral states are on each diagonal 50% of
the time: but below each node the slope is
constrained.

The source of the bias is the use of the signs of the
contingency tables. Consider a tetratomous node with
one change in each character. With null data the
chance that both changes are in the same lineage is
25% (in which case the contingency table is positive)
and there is a 75% chance that the two changes will
be in different lineages and produce a negative
contingency table. The contingency tables (2,1,1,0)
and (3,0,0,1) have frequencies 3:1, and the signs are
biased 3:1 in favour of the negative. Burt’s main
exposition of his method was for continuous
characters and he wrote of phylogenetically indepen-
dent contrasts that the ‘‘variances and covariances of
characters within contrasts, which are assumed to
depend only on events occurring since the last
common ancestor, will thereby be independent of
variances and covariances in other contrasts.’’ For
continuous characters this is true. But the relation
between phylogenetic and statistical independence is
more difficult with discrete characters. The evolution-

ary events indeed happened independently below each
node, but that does not guarantee statistical
independence: the signs suffer from the family
problem. However, the underlying numbers are
unbiased. A rare extreme positive contingency table
(3,0,0,1) balances a common less extreme negative one
(2,1,1,0). If we calculate the covariance estimates of
the two they are −1/16 and +3/16 and balance the
frequencies. The value of the true covariance is
therefore zero, and unbiased. It may be that the way
forward for Burt’s test with discrete data is not to use
the signs, but the covariances, of the contrasts. With
null data the covariance is zero and the test could look
for deviations from zero. The covariances are not
normally distributed, however, and a t-test is
inapplicable.

5.4.2. Mo�ller and Birkhead’s method of pairwise
comparisons

The bias is removed in the method of Mo�ller &
Birkhead (1992). They suggested picking pairs of
populations within a species, or pairs of species within
a genus, such that the pair differed for one of the
characters. The relation with some other character
could then be examined in each pair. In their example,
they picked pairs that differed in whether the
population (or species) was solitary or colonial, and
compared copulatory frequencies between the two.
The character used to define the pairs was practically
discrete; the other character, copulatory frequency,
was continuous, but the same method could be used
if it were discrete. The main advantage of the method,
as Mo�ller & Birkhead argued, is that the influence of
other, unobserved variables on the relation between
the characters under study should be minimised.
Other things are more likely to be equal for two
species in a genus than for two species from two
classes, or two phyla.

However, the method has the additional advantage
that, by picking two species from a genus, it avoids the
bias that is otherwise introduced by focusing on low
level nodes below which both characters vary. The
lineages leading to a pair of species will have a shared
region between the ancestor of the whole tree and the
common ancestor of the species pair, and then
separate regions after their common ancestor.
Provided there is the same chance of change from the
common ancestor of the pair to each of the species,
there must be a 50% chance of a +relation between
the characters and a 50% chance of a −relation with
null data. Both characters change in the pair of
lineages. If character A/a has changed in one of the
separate lineages, the chance that the character B/b
also changed in that lineage equals the chance B/b
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changed in the other lineage. The chance of + and
−relations are therefore equal. The only important
assumption is that there is an equal chance of change
in the lineages leading to the two species. It does not
have to be true, but for much of evolution it is a
reasonable assumption in a null hypothesis. It is
interesting to note that to remove the bias, it is
essential to pick exactly two species from the variable
node: if three were picked, for example, the bias
would creep back. Using all the species, as Burt’s test
does, gives the full bias.

We did not scrutinise Mo�ller & Birkhead’s method
in our simulations. In our 256 species tree there was
no ‘‘intraspecific’’ variation and our values of rho and
rate gave very few ‘‘genera’’ with a pair of species
varying in both characters: there might be two or so
per tree. The method was practical in their study,
which concerned relatively well studied characters in
a relatively well studied group containing thousands
of species (birds): even then they found only 13 pairs
for comparison. The main drawback of the method is
that it throws away data when it focuses on
intrageneric and intraspecific pairs. This introduces
an element of arbitrariness into the test. Why stop at
genera? Why not go up to families? Suppose a study
including families gave one relation and a study
excluding them gave another: what should be
concluded? The throwing away of data would then
matter. It also matters for the more obvious reason of
statistical power: its power may be reasonable with
continuous data and a broad taxonomic sweep: but
there is more to comparative biology than that. We
are not arguing the method is without merit; indeed
the way it avoids the family problem is clearly
meritorious. In summary, the method is valid, and in
particular avoids the family problem, but will be
practicable only in restricted circumstances.

5.5.   

The main features of the results (Table 1) are that
(i) the CSP version, in which numbers of species are
used within each randomisation node, is reasonably
well behaved with all shapes of phylogeny. It appears
to be a little conservative. (ii) The C1 version, in
which all non-zero numbers of species are reduced to
unity, gives invalid significances, and is biased against
the ancestral diagonal, except with the Hennig
phylogeny. Thus CSP is generally better behaved than
C1. Grafen & Ridley (in prep. b) demonstrate that
CSP will be unbiased on two assumptions, which were
met in our simulations; but they did not formally
analyse its validity. Here we have shown with
simulated null data that it is indeed unbiased and has
phenomenologically valid Type I error rates. The bias

in the C1 version of the test is due to the family
problem discussed in Section 5.4.1 above. With null
data, the test finds too many contingency tables with
entries on the non-ancestral diagonal. The bias is
strongest in the tetratomous and dichotomous trees
and disappears in the Hennig phylogeny. The reason
is that the Hennig tree is asymmetrical and, as we
noticed above when discussing the ICE test (Section
5.2), it is commoner than in the dichotomous or
tetratomous trees for one change to be below another
change in the same character. Now the local ancestral
state above a change may be in any position in the
contingency table, and the entries contributed by the
randomisations may also be in any position, rather
than being constrained into the neighbourhood of the
ancestral state. Thus in the Hennig phylogeny the
family problem is relaxed; the assumption that
changes in different parts of the tree are independent
applies; and the ICDE C1 test is approximately valid.

CSP works with the same randomisation nodes as
C1: why does it not suffer from the same bias due to
the family problem as C1 does? Here is at least part
of the answer. In CSP the numbers in the contingency
table are again constrained in the triangular pattern
of C1 (with entries for the ancestral state and the two
single change non-ancestral states but none for the
double change); but the effect is not so extreme. Focus
(for concreteness) on the corner opposite the ancestral
state; it is ab when the ancestral state is AB. It will
be observed to be low; and the expected value is
calculated from the row and column totals. The
highest number of species will be AB; but in C1 each
chunk of ancestral-state species is reduced to one and
the AB total will be lower than in CSP. When the
expected number for ab is calculated in CSP, the
expectation is low because it is predicted from two
small fractions (the non-ancestral row and column
totals/N), whereas in C1, N is lower and the predictive
fractions higher, and the expected value for ab higher
too. Thus, C1 spotlights the non-independence in the
data due to the family problem. In CSP the lower
expected number of species with ab appears to
compensate for the bias in the way the test looks at
the data, with the result that the family problem type
non-independence does not bias the test statistic. The
power of ICDE remains to be evaluated.

6. Conclusion

Grafen & Ridley (1996a) proposed understand-
ing the problems of discrete phylogenetic data in
terms of non-independence between path segments,
and not just between species tips, in the process that
gives rise to the data. Above we encountered the two
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further types of non-independence described by
Grafen & Ridley (in prep. b): non-independence that
arises in our reconstructions (between adjacent nodes
in the character state tree in ICE) and analyses (the
‘‘family problem’’). These various kinds of indepen-
dence are a formalisation of the statistical problems
of discrete data, and it is through identifying and
characterising their nature and effects that progress
will be made.

We now summarise the main results; we also offer
some interim recommendations concerning which
tests to use, though the analysis is too incomplete to
allow a final judgement. The ICE test has reasonably
valid Type I error rates with a realistically shaped
phylogeny, though the results for the tetratomous
phylogeny show how it can become severely biased
under some conditions. The things to watch out for
in real cases are the extent to which the ancestral state
at the root is retained throughout the tree and
whether that ancestral state counts for or against the
hypothesis. If the ancestral state is retained through
much of the tree, such that most changes are only one
step away from it, it is only safe to use the test if the
ancestral state counts for the hypothesis; the ICE test
is then conservative (and can become unusably
conservative). The phylogenetic regression, at least
when branch lengths are known, has approximately
valid Type I error rates and therefore can be used with
discrete as well as continuous data. Burt’s test shows
a similar pattern to the ICE test: it has reasonable
validity for a realistically shaped tree but is vulnerable
to bias in the dichotomous and tetratomous trees. The
results, however, are not due to the reason that
inspired the test, and this brings into question the
whole rationale of the test with discrete data. The new
ICDE test supplied valid results in its CSP version,
but the analysis here is preliminary and would not
justify a recommendation for general use.

REFERENCES

B, A. (1989). Comparative methods using phylogenetically
independent contrasts. Oxford Surv. Evol. Biol. 6, 33–53.

G, A. (1989). The phylogenetic regression. Phil. Trans. R.
Soc. Lond. B 326, 119–157.

G, A. & R, M. (1996a). A new model of discrete
character evolution. J. theor. Biol. (in press).

G, A. & R, M. (1996b). Non-independence in statistical
tests for discrete cross-species data. J. theor. Biol. (submitted).

G, A. & R, M. (in prep. a). A formalisation of the
comparative method of Ridley (1983).

G, A. & R, M. (in prep. b). Independent character
difference evolution: a new statistical test for discrete
cross-species data.

H, P. H. & P, M. D. (1991). The Comparative Method in
Evolutionary Biology. Oxford: Oxford University Press.

H, W. (1981). Insect Phylogeny. Chichester, U.K.: John
Wiley.

M, W. P. (1990). A method for testing the correlated
evolution of two binary characters: are gains or losses
concentrated on certain branches of a phylogenetic tree?
Evolution 44, 539–557.

M�, A. P. & B, T. R. (1992). A pairwise comparative
method as illustrated by copulation frequency in birds. Amer.
natur. 139, 644–656.

N A G [NA] (1987). The Generalised
Linear Interactive Modelling System. Oxford, UK and Downers
Grove, Illinois: Numerical Algorithms Group.

P, M. (1994). Detecting correlated evolution on phylogenies:
a general method for the comparative analysis of discrete
characters. Proc. R. Soc. London B 255, 37–45.

R, A. F. & N, S. (1995). Inference from binary comparative
data. J. theor. Biol. 173, 99–108.

R, M. (1983). The Explanation of Organic Diversity. Oxford:
Clarendon Press.

R, M. & G, A. (1996). How to study discrete
comparative methods. In: Phylogenies and the Comparative
Method in Animal Behavior, Martins, E. P. (ed.), p. 76–103. New
York: Oxford University Press.

W, S. (1988). Mathematica: A System for Doing Math-
ematics by Computer. New York: Addison-Wesley.

APPENDIX

Dichotomous: {{{{{{{{1, {{2, 3}, 4}}, {{{5, {6, 7}},
8}, {{9, {10, 11}}, 12}}}, {{13, {14, 15}}, 16}},
{{{{{17, 18}, 19}, 20}, {21, {22, {23, 24}}}}, {{25,
{26, {27, 28}}}, {29, {30, {31, 32}}}}}}, {{{{33,
{{34, 35}, 36}}, {37, {{38, 39}, 40}}}, {{{{41, 42},
43}, 44}, {{{45, 46}, 47}, 48}}}, {{{49, {50, {51,
52}}}, {53, {{54, 55}, 56}}}, {{{57, {58, 59}}, 60},
{{61, {62, 63}}, 64}}}}}, {{{{{{{{65, 66}, 67}, 68},
{69, {70, {71, 72}}}}, {{73, 74}, {75, 76}}}, {{77, {78,
79}}, 80}}, {{{{81, 82}, {83, 84}}, {{{{85, 86}, {87,
88}}, {{89, 90}, {91, 92}}}, {{93, 94}, {95, 96}}}},
{{{97, {98, {99, 100}}}, {{{101, 102}, {103, 104}},
{{105, 106}, {107, 108}}}}, {{109, 110}, {111,
112}}}}}, {{{113, 114}, {115, 116}}, {{{{117, 118},
{119, 120}}, {121, {{122, 123}, 124}}}, {{125, 126},
{127, 128}}}}}}, {{{{{{{129, 130}, {131, 132}}, {{133,
134}, {135, 136}}}, {{137, 138}, {139, 140}}}, {{141,
142}, {143, 144}}}, {{{{{{145, 146}, {147, 148}},
{{149, {150, 151}}, {153, {{154, 155}, 156}}}, {{157,
158}, {159, 160}}}, {{{{165, 166}, {167, 168}}, {{169,
170}, {171, 172}}}, {{161, {{162, 163}, 164}}, {{173,
174}, {175, 176}}}}}}, {{{{177, 178}, {179, 180}},
{{181, 182}, {183, 184}}}, {{185, {186, {187,
188}}}, {189, {190, {191, 192}}}}}}}, {{{{193, {194,
195}}, 196}, {{{197, {{198, 199}, 200}}, {{201, 202},
{203, 204}}}, {{205, {206, 207}}, 208}}}, {{{{209,
{210, {211, 212}}}, {{{{213, 214}, 215}, 216}, {{{217,
{218, 219}}, 220}, {{221, {222, 223}}, 224}}}},
{{{{225, 226}, 227}, 228}, {{{229, {230, 231}}, 232},
{{{{233, 234}, 235}, 236}, {{237, {238, 239}},
240}}}}}, {{{241, {242, {243, 244}}}, {{245, 246},
{247, 248}}}, {{249, {{250, 251}, 252}}, {253, {{254,
255}, 256}}}}}}}
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Hennig: {{1, 2}, {3, {{4, 5, {6, 7}}, {8, 9, 10}},
{11,{{{{{{{{12, 13}, {14, 15}}, {{{{16, 17}, 18},
19}, 20}}, {{{{21, 22}, 23}, {{24, 25}, {26, {27,
28}}}}, 29}}, 30}, 31}, 32}, {{33, 34, 35}, {{{{36,
37, {38, {39, 40}}, {41, {42, {{{{43, 44}, 45},
46}, {{{47, 48, 49}, 50}, {{{{51, 52}, 53}, 54},
{{{55, 56, 57}, {{{58, 59}, 60}, {{{{{{{{61, 62},
63}, 64}, 65}, 66}, {{67, 68}, {69, 70, 71}}}, {{72,
73}, 74}}, {75, 76}}, 77}}, {{78, 79}, 80}}}}}}}}, 81},
{82, {{83, {84, 85}}, {{{86, 87}, {{88, 89}, {90, {91,
92}}}}, {{93, {94, 95}}, {{{96, {97, 98}}, {99, 100}},
{{{101, 102}, {103, 104}}, {105, {{106, 107}, {{108,
109}, {110, 111}}}}}}}}}}}, 112, {{{113, {114, 115}},
{116, 117}}, {{118, {{119, {120, 121}}, {{{{122, 123},
124}, {125, 126}}, {{127, 128}, {{{129, {130, 131}},
{132, 133}, {134, 135, 136, 137}}, {138, 139}}}}}},

{{{140, {141, {142, 143}}}, {144, 145}, {146, 147,
148}, {149, 150}}, {151, 152}}}}, {153, {154, {{155,
{{156, 157}, {158, {{159, 160}, {{161, 162}, {163,
164}, 165}}}}}, {166, {{167, {168, {169, {{170,
171}, {{172, {173, 174}}, {175, {176, {177,
178}}}}}}}}, {{{{179, 180}, 181}, 182}, {{183, 184},
{185, 186}}}, {{{187, 188}, {{189, 190, {191, 192,
193}}, {194, {195, {{{196, 197}, {198, 199}}, {200,
201}}}}}}, {{202, {203, 204}, {205, 206}}, {{{207,
208}, 209}, {210, {211, 212}, {{{213, 214}, 215},
{{{216, 217}, {218, 219}}, 220}}, {{221, {{{222,
223}, 224}, 225}, {{{226, {227, {228, 229}, {230,
231}}}, 232}, 233}}, {{{{234, 235}, {236, 237}}, 238},
{239, {{{{240, 241}, 242}, {{{{243, 244}, 245}, {246,
247, 248}}, 249}}, {{250, 251}, {{{{252, 253}, 254},
255}, 256}}}}}}}}}}}}}}}}}}}}}


