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A recent model shows that altruism can evolve with limited migration and variable group sizes, and the

authors claim that kin selection cannot provide a sufficient explanation of their results. It is demonstrated,

using a recent reformulation of Hamilton’s original arguments, that the model falls squarely within the

scope of inclusive fitness theory, which furthermore shows how to calculate inclusive fitness and the

relevant relatedness. A distinction is drawn between inclusive fitness, which is a method of analysing social

behaviour; and kin selection, a process that operates through genetic similarity brought about by common

ancestry, but not by assortation by genotype or by direct assessment of genetic similarity. The recent

model is analysed, and it turns out that kin selection provides a sufficient explanation to considerable

quantitative accuracy, contrary to the authors’ claims. A parallel analysis is possible and would be

illuminating for all models of social behaviour in which individuals’ effects on each other’s offspring

numbers combine additively.

Keywords: inclusive fitness; altruism; relatedness; structured populations; varying group size;

public goods game
1. INTRODUCTION
The evolution of altruism remains an active topic in

biological research, but the power and the scope of

inclusive fitness theory (Hamilton 1964, 1970) remain

largely unappreciated. Killingback et al. (2006) recently

claim to have demonstrated a newmechanism for evolving

altruism that cannot be fully accounted for by kin

selection. Here, we put this claim to the test using

inclusive fitness theory, developing an approach that

could equally be taken for many other papers.

The test is conducted using a new formulation of

inclusive fitness theory recently proposed by Grafen

(2006), which fulfils Hamilton’s original intentions by

combining the best features of his 1964 and 1970

derivations, eliminating minor flaws, incorporating uncer-

tainty, permitting arbitrary ploidies and arbitrary genetic

architecture, and being fully explicit about optimization.

Furthermore, Hamilton’s original generality of interac-

tional structure is retained; individuals may engage in

different numbers of social interactions, and the

interactions may all be different in nature. Most sub-

sequent rederivations of inclusive fitness have insisted on

just one kind of interaction that individuals all engage in

the same number of times.

All of the inclusive fitness results used in the present

paper are from Grafen (2006): the proof that the model

falls within the inclusive fitness framework, the expression

for inclusive fitness, the formula for relatedness and the

result that inclusive fitness is maximized by selection.

Other important bodies of work on inclusive fitness are by

Frank (1998; see also Taylor & Frank 1996), Taylor and

co-workers (e.g. Taylor 1990, 1996; Taylor et al. 2000)
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and Rousset and co-workers (Rousset 2004). The general-

ity, directness and the immediate applicability of Grafen

(2006) are bought at the cost of saying nothing about the

link between relatedness and common ancestry, which is a

central element of many other papers. The assumption of

additivity is also relaxed in some of them.

An important distinction made by Hamilton (1975) is

emphasized here. Inclusive fitness theory is very general

and applies to genetic similarity, however caused,

whether by common ancestry, assortation of genotypes

or kin recognition. As Grafen (2006) shows, provided

social interactions combine additively in determining

offspring numbers, there is (almost always) a relatedness

that can be calculated such that the direction of gene

frequency change is determined by inclusive fitness.

However, it is useful to reserve the term ‘kin selection’ for

situations in which the relatedness arises through

common ancestry. (The situation in which the related-

ness cannot be defined occurs when a quantity called the

‘Hamilton residual’ cannot be rendered zero by choice of

relatedness, and is discussed in detail in section 3.3 of

Grafen (2006). It arises when the actors are genetically

representative of the population, so that the gene

frequency being studied has an exactly zero correlation

with the altruistic phenotype.)

Section 2 describes the model of Killingback et al.

(2006), and shows how it can be represented within the

framework of Grafen (2006), and thus derives a formula

for the relatedness with which inclusive fitness is

maximized. The analysis of that section could be repeated

with few changes for many other models. Section 3 moves

on to the particularities of the current model. It defines the

model more precisely, gives details of the demographic

properties of the model and calculates the relatedness that

would arise within a group through common ancestry

alone. This relatedness allows predictions to be made
This journal is q 2006 The Royal Society
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about selection, and a computer calculation of the model

(detailed in Appendix A) allows Section 4 to put those

predictions to the test.
2. THE VARYING GROUP SIZE MODEL OF
KILLINGBACK ET AL. (2006)
Killingback et al. (2006) study a ‘public goods’ game in a

grouped asexual population. Each individual j plays a

value xj, which is directly a cost. xj is constrained to lie

between 0 and V. Each individual receives, as a benefit, the

average value of xi in the group, multiplied by an ‘interest

rate’ k. Let Gj be the set of individuals in the group to

which j belongs, and nj be the number in that group. We

can write the net pay-off in two equivalent ways:

wj ZVKxj C
k

nj

X
i2Gj

xi ;

wj ZVKxj 1K
k

nj

� �
C

k

nj

X
i2Gj ;isj

xi :

ð2:1Þ

V is the baseline fitness in the absence of social

interactions. The two forms suggest two equivalent ways

forward. The upper version includes j in the recipients of

her own action, as part of the group, and counts the ‘cost’

as the full xj; the lower version nets off the benefit to herself

from her cost. We follow the first course for simplicity; it

will affect the details of the analysis, but the outcome is

obviously the same.

Killingback et al. (2006) further assume that individ-

uals are haploid, asexual reproduction occurs proportion-

ally to fitness, each individual has an independent chance

of dispersal with probability d so that dispersers join

another group at random and then population-wide

mortality reduces the mean group size to the prescribed

value m. Groups will thus vary in size. The total

population size was fixed at 500.

The authors found that with a mean group size of 5,

altruism was broadly selected when d was less than

approximately 0.125 for kZ2 and when d was less than

approximately 0.27 for kZ3. The obvious explanation is

that limited dispersal (low d) brings about intra-group

relatedness,which favours altruism togroupmembers.The

authors reject this explanation as insufficient. They state

that in another unpublished study, they found that a

different game did not evolve altruism in the same

demographic circumstances. However, this is a weak

argument as there may well be important differences

between the two games (it would be premature to

investigate these before both models have undergone peer

scrutiny as part of the process of publication). They also

propose that there might be a new mechanism for evolving

altruism, and suggest it could be based on a combination of

the fact that at very small group sizes higher x is individually

advantageous, that small group sizes arise in themodel, and

Simpson’s paradox (Blyth 1972). This proposal is rather

vague: as we shall see, it is also unnecessary.

Grafen’s (2006) new formulation of inclusive fitness

assumes additivity of fitness interactions by representing

the number of successful gametes of an individual j as

wj Z bjje C
X
i;tse

bijt ;

bijt is the effect of individual i on the number of successful

gametes of individual j, when i is acting in ‘role’ t in
Proc. R. Soc. B (2007)
relation to j. Role is a crucial concept employed by

Hamilton (1964) and revived more formally by Grafen

(2006). A role will typically delineate a situation in which a

decision needs to be made, for example, ‘parent towards

offspring it is feeding’ or ‘first of two strangers to meet at a

food resource towards the second’. The significance of

roles is that the relatedness is defined not for individuals,

but for each role. There is a special role e for ego, in which

an individual affects her own number of successful

gametes through non-social action.

We now show that the model of Killingback et al.

(2006) falls within the scope of inclusive fitness theory by

showing how to define the bijt to establish an equivalent

formula for offspring number. This is simply done using

equation (2.1). Let g be the role in which an individual

plays the public goods game with her group members.

Here are the two different ways to represent the model in

inclusive fitness terms

bijt Z

VKxi t Z e; i Z j

k

nj
xi t Z g; j2Gi

0 otherwise

8>>>>>><
>>>>>>:

bijt Z

VKxið1Kk=njÞ t Z e; i Z j

k

nj
xi t Z g; jsi; j2Gi

0 otherwise

:

8>>>>>><
>>>>>>:

ð2:2Þ

We will pursue the analysis with the upper version. The

key assumption here is just the additivity of fitness

interactions. The definitions of the bijt are needed to

implement the formulae of Grafen (2006) for inclusive

fitness and relatedness. Non-additive situations can be

handled by, for example, Taylor & Frank (1996).

This expression in terms of bijt is the crucial step: it

follows from section 3.1 of Grafen (2006) that gene

frequency change will favour types of individual with

higher inclusive fitness. The formula for the inclusive

fitness of individual i is

biie C
X
tse

rt
X
j

bijt ZVKxi C rnik
xi
ni

ZV CxiðrkK1Þ;

ð2:3Þ

where the relatedness r is to all group members (including

self ), and we drop the superscript t because there is only

one role in this simple example. The mean value of x will

therefore increase if k is high enough, and specifically if

rkK1O0. The critical value of k, at which the mean of x

remains unaltered, is

kcrit Z
1

r
: ð2:4Þ

The group size ni cancels out because each individual gives

the same amount to the group as a whole, whatever its size.

But what is the value of r? The notation rIF is

introduced to mean the relatedness that makes inclusive

fitness work. Equation (2.3) of Grafen (2006) shows that

in general

rIF Z

P
i

P
jðpjKpÞbijtP

i

P
jðpiKpÞbijt

: ð2:5Þ
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(The formula fails when the denominator equals 0—see

Grafen (2006), section 3.3.) Note this depends on a

particular p-score, which is either a gene frequency or a

weighted linear sum of gene frequencies. The evolution

of a p-score depends on inclusive fitness calculated with

its value of r IF. r IF also depends on all the demographic

details and the current state of the population. Thus, in

line with the very general conditions for inclusive

fitness, there is a great deal of complexity here,

reflecting the complexity in the original model. It may

be worth pointing out that if we inserted an extra

dispersal stage so that the groups had the same size

distribution but individuals were allocated to groups at

random, it is clear that rIFZ0 and so in that case

inclusive fitness would equal VKxi and selection would

reduce x as far as it could.

In an asexual one-locus model, the useful p-score to

study is x itself. Thus, we let pjZxj, and substitute using

equation (2.2), and define ~xj as the average value of x in

the group to which j belongs. It is easy to show that

rIFZCov½xi ; ~xi�=Var½xi�, which could be expected from the

kin selection approach of Taylor & Frank (1996), but note

that the weighting by bijt has automatically ensured the

appropriate weighting of different-sized groups. We

further consider the situation in which there are only

two genotypes with population frequencies 1Kg and g,

playing distinct values x1 and x2, and let a1 be the expected

frequency of type 1 in the group of a randomly chosen

individual of type 1, and mutatis mutandis for a2. It is easy

to show that

rIF Z
x1 a1Kð1KgÞ

1Kg
Kx2 a2Kg

g

x1Kx2
: ð2:6Þ

This form shows that all the necessary demographic details

for the polymorphic model (as defined in Appendix A) are

encapsulated in a1 and a2. In particular, the effects of both

the mean group size and the variability in group size are

included in them.

The values of a1 and a2 will be affected by all factors

influencing genetic similarity of group members. If only

common ancestry is important, then we would say that kin

selection explained the results. Section 3 derives an

expression for the value of r that measures the genetic

similarity among group members that would be expected

from common ancestry alone, ranc, which is called the

ancestral relatedness.

Whether rIFZranc will be answered here by direct

calculations for this particular model. The same question

is considered analytically in general contexts by, for

example, Wild & Taylor (2004) and Rousset (2004),

though it is usually phrased as whether identity-

by-descent suffices to calculate relatedness. So far as

I am aware, none of the existing general results apply

directly and unequivocally when there are groups of

different sizes. There is a general sense that in the absence

of genetic discrimination, indeed rIFZranc. Future work

will surely provide an analytic result that encompasses the

present model.

It is worth noting that the analysis so far could be

replicated without difficulty for any model that can be

brought within the scope of inclusive fitness theory by

establishing additivity of fitness interactions. From now

on, the analysis becomes more particular.
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3. THE EXTENT OF COMMON ANCESTRY
In order to investigate the extent of common ancestry in

groups, we need to define the model more precisely.

Killingback et al. (2006) fixed their population size at 500,

and obtained the number of offspring of the individuals in

the parental generation from a multinomial distribution

with probabilities proportional to fitnesses. Here an

infinite population is assumed to ease analysis, and the

appropriate limiting case of the multinomial distribution is

assumed: each individual has a Poisson number of

offspring with a mean proportional to its fitness, scaled

so that the mean of the individual Poisson means equals 1.

Parents do not survive to the next generation. Contra-

riwise, the original model can be understood as making the

Poisson assumption, but then conditioning on the total

number of offspring being 500. The size of the population

is not implicated in the authors’ arguments about the

selective pressures at work, so it is fair to study the infinite

population model to investigate their conclusions.

Two models are defined in Appendix A, which

implement the assumptions above in a conceptually

straightforward way. A monomorphic model with just one

value of x present is used to calculate ancestral related-

nesses, and a polymorphic model with two genotypes each

with its own value of x is used to calculate the direction of

selection at different values of the ‘interest rate’ k.

The individuals in a group whose ancestry within the

group goes back to the same immigrant are called a clone,

and the distribution of clone size depends on the number

of generations since the immigrant’s arrival. Calculations

in Appendix B reveal that after G generations, the

distribution of clone size in the monomorphic model has

meanZ ð1Kd ÞG varianceZ
ð1Kð1Kd ÞGÞð1Kd ÞG

d
;

while the distribution of the size of a whole group has

meanZm; varianceZ
m

ð2Kd Þd
:

If we pick an individual at random, she is likely to be in

a larger than average clone and larger than average group.

The ‘experienced clone size’ has

meanZ
1

dð2KdÞ
; varianceZ

ð1KdÞ2ð3K2dÞ

ð2KdÞ2d2ð3K3dCd2Þ
;

and the ‘experienced group size’ has

meanZmC
1

dð2KdÞ
;

varianceZ
m

ð2Kd Þd
C

ð1Kd Þ2ð3K2dÞ

ð2KdÞ2d2ð3K3dCd2Þ
:

Now we turn to calculating the ancestral relatedness.

We use the definition of relatedness in equation (2.5), and

apply it to a p-score that indicates belonging to a very rare

clone as distributed across the population. Hence, we

assume that there has only ever been one arrival of that

clone in any one group, and that the clone makes only a

zero fraction of the population as a whole, so that pZ0.We

set piZ1 for clone members and zero for others, and use

equation (2.2) to obtain

ranc Z

P
i

P
j2Gi

pj
k
ni
xP

i

P
j2Gi

k
ni
x

:
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Figure 1. The probability of migration (d ) on the x-axis
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We can cancel kx and note that
P

j2Gi
1=niZ1. If we let ci

be the number of individuals in the group that are a

member of the clone, then
P

j2Gi
pjZci. This yields

ranc Z

P
i

P
j2Gi

pj
niP

i

P
j2Gi

1
ni

Z

P
i
1
ni

P
j2Gi

pjP
i

P
j2Gi

1
ni

Z

P
i
ci
niP

i 1
: ð3:1Þ

Appendix C finds an analytic expression for this

quantity in the monomorphic model, which allows it to

be calculated. ranc will be the same for all loci, but may

differ from rIF owing to assortation or genetic discrimi-

nation at the x locus. If selection follows inclusive fitness

with this relatedness, that is, if rIFZranc, then only kin

selection is at work in the model.

affects the relatedness (r) of an individual to her whole group
(including herself). The theoretical value in the mono-
morphic model given in equation (A 2), ranc, is shown with
an open rectangle. The measured values in the polymorphic
model are shown for kanc (filled rectangle), 0.99!kanc
(triangle) and 1.01!kanc (cross). The values are too close
together to be graphically distinguished. The data are
provided in the electronic supplementary material.

0.2 0.4 0.6 0.8
d

–1.0

–0.5

0.5

1.0
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discrepancy

Figure 2. The probability of migration (d) on the x-axis is
related to the fractions of emigrants that are type 2 on the
y-axis. The immigrants have a fraction of 0.4, so values above
(below) 0.4 indicate selection for higher (lower) x. The cases
are 0.99!kanc (diamond), kanc (cross), 1.01!kanc (open
square) and the null case with x1Zx2Z0 (filled square). For
clarity across the range of d, the deviations from 0.4 are shown
as relative to the discrepancy of the 1.01!kanc case, whose
values are therefore all C1. The deviations of the kanc case
from zero are caused by (i) slight deviations of ranc in the
selection model compared with the monomorphic model
arising from the difference between x1 and x2, (ii) numerical
inaccuracies in the calculation of ranc; and deviations in both
the kanc and null cases, (iii) the restriction of the calculation to
a finite grid when in theory groups are of unlimited size as well
as, (iv) general numerical accuracy issues in computer
programs. The figure shows that within high numerical
accuracy, the critical value of k at which selection is neutral is
kanc. The relative and absolute discrepancies are provided in
the electronic supplementary material.
4. RESULTS
Selection was measured in the polymorphic model of

appendix A at kancZ1/ranc, and at 1% above and 1% below

kanc. The theory tells us that selection proceeds according

to kcritZ1/rIF. If rIFZranc then kcritZkanc, and selection

should be neutral at kanc, favour higher x at 1% above, and

lower x at 1% below.

The analytic values of ranc from equation (3.1) were

derived in Appendix C and are shown in figure 1 for the

parameter values used by Killingback et al. (2006), along

with the relatednesses rIF from equation (2.5) measured in

the polymorphic model. Clearly, the relatedness is very

high at low dispersal rates, and comes down to

approximately 0.2, which is the inverse of the mean

group size and reflects the fraction of the group the

individual itself comprises. The virtual equality of ranc and

rIF shows that common ancestry does explain the selection

in the model to considerable numerical accuracy.

Figure 2 has further results from the polymorphic

model. It shows how closely the ancestral relatedness

predicts the direction of selection. To pursue the

discrepancies would involve numerical analysis and

questions of machine accuracy. There is no clear biological

issue causing the minute discrepancies from the effects of

common ancestry.

It is of interest to consider fig. 3 of Killingback et al.

(2006) in relation to our figure 1. With kZ2, the current

model would predict selection to increase contributions

when d is less than approximately 0.125, and to decrease it

for higher d. This is fully consistent with their fig. 3(a). For

kZ3, theory predicts the break point to lie between 0.25

and 0.3. This is again fully consistent. The most

significant discrepancy is that many of the points in their

fig. 3 are intermediate between xZ0 and 5, and this is

probably due to their mutational scheme which will tend

to push away from boundaries, relatively more strongly

where selection is weak. The theory matches their

findings.

The anomalous behaviour of dZ0 in both parts of fig. 3

of Killingback et al. (2006) is simply explained. In the

absence of any migration, their population of 500

individuals would find itself eventually all in one group

for the rest of time; within any one closed group,

contributions must be selected downwards.

The unavoidable conclusion is that no force other than

common ancestry is required to explain the detailed

quantitative pattern of selection when the public goods

game is played in varying-sized groups, as modelled by

Killingback et al. (2006). It is wholly unsurprising that kin
Proc. R. Soc. B (2007)
selection plays some role, as it is inevitable that kinship ties

build up in groups in which siblings are likely to be present

together. Such ties and genetic similarity have been one of

the primary objects of study in population genetics from

its early days, as embodied in the F-statistics of Wright

(1969). The power of the current analysis is to be able to

show decisively that kin selection is the only quantitatively

significant force at work. This confirms by calculation in

the present case what is clearly suggested in general by the
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analyticalworkofRousset (2004) andWild&Taylor (2004):

commonancestry is theonly causeofgenetic similarity in the

absence of assortation or genetic discrimination.
5. DISCUSSION
On the particular case studied here, the previous section

shows that altruism in the model of Killingback et al.

(2006) is precisely explained by the building up of ties of

common ancestry between group members. The authors

themselves specifically assert that their mechanism is

‘clearly quite distinct from kin selection’, but the results of

the previous section show the contrary. If variable group

size has an effect, then it does so through affecting the

extent of common ancestry among the members of a

group. Whether that effect exists would naturally be

investigated using models with different degrees of

variability of group size. The paper’s title is ‘Evolution in

group-structured populations can resolve the tragedy of

the commons’: this turns out to be true to the extent that

limited migration increases the strength of common

ancestry within groups, a point already made by Hamilton

(1964, 1970, 1975).

Lehmann & Keller (2006) have appealed for the results

from repeated games to be interpreted in terms of

Hamilton’s inclusive fitness, and present a kind of meta-

model to make that task easier. The work of Grafen (2006)

allows any model of social behaviour with discrete non-

overlapping generations and additive fitness effects to be

interpreted in terms of inclusive fitness. One advantage is

conceptual clarity of biological interpretation, and another

is the value for a field of having a single central theory to

which everything can be referred. Developments following

Wild & Taylor (2004) and Rousset (2004) are increasing

the range of conditions under which we can be sure that

the only cause of genetic similarity is common ancestry. It is

therefore good practice to place models of social behaviour

in the context of Hamilton’s inclusive fitness theory, and

recent theoretical advancesmake that increasingly straight-

forward in a widening set of circumstances.

Dr David Stirzaker gave timely advice on probability
generating functions, and Alexis Gallagher, Mark Rendel,
Dr Francisco Úbeda de Torres and Dr Marco Archetti made
helpful comments on an earlier manuscript. I am particularly
grateful to Prof. Peter Taylor and two anonymous referees,
whose comments improved enormously the clarity and
organization of the paper.
APPENDIX A. DEFINING AND IMPLEMENTING
THE MODELS
It is satisfactory to measure common ancestry in a

population in which only one strategy is being played, as

those values of relatedness will hold when the competing

values of x are close enough to each other. Hence, we now

define a monomorphic model. The infinite population

consists of groups of mean size m. It is more accurate to

think of these groups as ‘locations’ that can support a

group, as they continue to exist with a ‘group size’ of zero

and in particular continue to receive immigrants. There

are discrete, non-overlapping generations. At the end of

each generation, just before dying, each individual

produces a Poisson number of offspring with a mean

that is proportional to her fitness. Each individual

offspring independently disperses with probability d and
Proc. R. Soc. B (2007)
remains in the natal group with probability 1Kd. Each

disperser independently joins a random group. The

population numbers are then reduced to make the mean

group sizem by giving each individual in the population an

equal independent chance of dying. This model is studied

analytically in Appendices B and C.

Selection is studied in a model with two genotypes

x1Z0, x2Z0.05 and with mZ5, VZ5. The frequency of

type 2 in the migrant cloud is taken to be gZ0.4. The

value of d is varied according to the values used by

Killingback et al. (2006). The aim is to find whether x is

selectively neutral at kZkanc, so selection was studied at

0.99!kanc, kanc and 1.01!kanc. The values of x were

chosen close together so that the ancestral relatedness

would be close to the monomorphic case. Selection

brought about by large discrepancies in x will certainly

exist, but is unlikely to be of biologically interest: in any

event, the weak selection result is significant in itself. An

additional ‘null’ case was studied with x1Zx2Z0.

An array pz of size nC1!nC1 is used to represent the

probability distribution of groups in iteration z, where pz
IJ

is the fraction of groups that have exactly I type 1

individuals and exactly J type 2 individuals. When

individuals are produced above n of one type in a group,

that number is reduced to n. Each group plays the public

goods game within itself, and individuals have Poisson

distributed offspring withmean given by (1Kd) times their

fitness divided by the population mean fitness. The factor

of 1Kd represents selecting only the offspring that do not

emigrate, andmaking it relative to population mean fitness

accounts for the population-wide mortality that maintains

mean population size. The mean population fitness from

the previous iteration is used, as this iteration’s value is not

known in advance. In all cases studied, the mean

population fitness converged. Independent Poisson num-

bers of type 1 immigrantswithmean (1Kg)md andPoisson

numbers of type 2 immigrantswithmeangmd arrive in each

group in each generation. These assumptions allow the

calculation of pzC1 from pz. The process is started by

setting p0 as the product of two single-variable probability

distributions derived from the monomorphic model

assuming the mean number of types 1 and 2 individuals is

(1Kg)m and gm, respectively. The process continued until

the squared stepsize (defined as
P

I ;J ðp
z
IJ KpzK1

IJ Þ2) was less

than 4!10K30 for two consecutive generations. Let

the final iteration be at zZZ. If the fraction of type 2

among the emigrants in iteration Z is greater than g then

selection is favouring type 2, and if it is less then it is

favouring type 1.

nwas made as large as practicable and necessary, and in

every case the fraction of the population in the outer

margin of pZ was less than 10K6. Checks were made and

the mean and variance of total numbers in the groups were

always within a proportion 6!10K5 and 8!10K4 of the

monomorphic theoretical value as derived in Appendix A.

Relatedness as defined by equation (2.5) was calculated

and was always within 1.5!10K4 of the monomorphic

value. The dZ0.025 case was always the least well-

conditioned, and with nZ196 took over 48 h to converge

on a moderate desktop computer.

All calculations of the models, and indeed much of the

mathematical analysis, were performed using MATHEMA-

TICA v. 5.2 (Wolfram Research, Inc. 2005).
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APPENDIX B. GROUP AND CLONE SIZES
A discrete random variable X taking values in the non-

negative integers with probabilities q0,q1,q2, . has a

probability generating function f(s) defined by

f ðsÞhEðsX ÞZ
XN
IZ0

sIqI :

Probability generating functions (pgfs) have many useful

properties (see Feller (1968), particularly pp. 267–288).

We study the pgf of the numbers of a clone G years after

its arrival at a location, denoted as fG(s). In the initial

year, f0(s)Zs, as there is exactly one member. If a

random number of independently and identically

distributed random variables are summed, then the pgf

of the sum is g( f(s)) where f(s) is the pgf of each

summed variable, and g(s) is the pgf of the number of

terms in the sum. In this case, the number of individuals

in generation GC1 of a clone is the sum of a Poisson

distribution with mean 1Kd (pgf is eK(1Kd )(1Ks)) for

each of the individuals in generation G (pgf is fG(s)).

Summarizing,

f0ðsÞZ s fGC1ðsÞZ fGðe
Kð1KdÞð1KsÞÞ:

The total number of individuals at a location with an

immigrant ancestor who arrived G generations ago is the

sum of a Poisson number (with mean md) of such

Poisson branching processes. The composition rule

stated earlier shows that the random sum has a pgf of

eKmdð1KfGðsÞÞ and the total number of individuals is the

sum of those individuals for all values of G. Summing

independent random variables corresponds to multiply-

ing pgfs, yielding the pgf for the total number of

individuals at a site as

hðsÞZ e
Kmd

PN
GZ0

ð1KfGðsÞÞ

: ðB 1)

It is important that this formula allows us to compute h

numerically, as the sum converges provided dO0, and

can be taken to enough terms for practical purposes.

To find the mean number in the group of a randomly

chosen individual, we need to obtain the pgf of

‘experienced group size’, by weighting the probabilities

of each group size by the group size itself, to reflect the

proportional chance of its selection, and to normalize so

they sum to one. The new pgf is sh 0(s)/h 0(1). The same

exercise for clone size requires adding over all the

generations for which a clone might have persisted, to

obtain the pgf of ‘experienced clone size’ as

s
PN

GZ0 f
0
GðsÞ=

PN
GZ0 f

0
Gð1Þ.

The mean and variance of a variable can be found from

its pgf as f 0(1) and f 00(1)Cf 0(1)Kf 0(1)2, and these provide

the values in the main text.
APPENDIX C. RELATEDNESS THROUGH ANALYSIS
In this appendix, we calculate the quantity in equation (3.1)

using pgfs. An individual in a group is the descendant of an

immigrant G generations ago. Agree that we can select a

random individual in the population. Then we define two

random variables (C,R) as the total number of individuals

descended from the same initial migrant by continuous

ancestry within the group, and the total number of
Proc. R. Soc. B (2007)
individuals in the rest of the group.C includes the individual

herself, and CCR is the total number in the group.

Let the joint pgf of (C, R) be uðs; tÞhEðsCt RÞ. We first

derive a formula for u, and then use it to find

relatednesses. The distribution of C is the distribution of

experienced clone sizes, whose pgf was obtained in

Appendix B. In a pragmatically crucial move, we note

that h0ðsÞZmdhðsÞ
PN

GZ0 f
0
GðsÞ, leading to the second of

these forms for C’s pgf

s
PN
GZ0

f 0GðsÞ

PN
GZ0

f 0Gð1Þ

Z
sh0ðsÞ

hðsÞh0ð1Þ
:

To obtain the pgf of R, we will show that R and C are

independent, and that R has the same pgf as the total

number in a group, namely h. For any given G, the

number of clones startingG generations ago has a Poisson

distribution, and so the fact that the selected individual

shows a clone was started then does not change the

distribution of the remaining number of clones starting at

the same time. The number starting at any other time is

unaffected by knowledge that a clone was started G

generations ago. Thus, R has the same distribution as the

total number of individuals in a group, conditional on each

possible G, and therefore unconditionally too. The joint

pgf of two independent variables is simply the product of

the individual pgfs, so putting them together gives

uðs; tÞZ
sh0ðsÞhðtÞ

hðsÞh0ð1Þ

Now the pgf v(s, t) of (C, RCC) is EðsCtRCCÞZEððstÞCtRÞ

and so equal to u(st,t). To study the distribution of the

relatedness, which is C/(RCC), note thatðt
tZ0

s
t
v
P

I ;J s
ItJqIJ

vs

 !
dtZ

X
I ;J

s I t J
I

J
qIJ ;

and that I/J is the relatedness for an individual in a clone of

size I in a group of size J. (Indeed I/J here equals ci/ni in the

notation of equation (3.1)). Evaluating the expression at sZ
tZ1 gives the mean relatedness over the population.

Formally, we use this to express the mean relatedness in

terms of v, and substitute back with u and h in turn to obtain

rancZ

ð1
tZ0

s

t

vvðs;tÞ

vs
dt

�����
sZ1

Z

ð1
tZ0

Kth0ðtÞ2ChðtÞðh0ðtÞCth00ðtÞÞ

hðtÞh0ð1Þ
dt

ðC1)

The final integral is readily evaluated numerically using

equation (B 1), and provides an analytic value for the

relatedness of equation (3.1) for the given parameter values

m and d.
REFERENCES
Blyth, C. R. 1972 On Simpson’s paradox and the sure-thing

principle. J. Am. Stat. Assoc. 67, 364–366. (doi:10.2307/
2284382)

Feller, W. 1968 An introduction to probability theory and its
applications, 3rd edn. New York, NY: Wiley.

Frank, S. A. 1998 The foundations of social evolution.
Princeton, NJ: Princeton University Press.

Grafen, A. 2006 Optimisation of inclusive fitness. J. Theor.
Biol. 238, 541–563. (doi:10.1016/j.jtbi.2005.06.009)

http://dx.doi.org/doi:10.2307/2284382
http://dx.doi.org/doi:10.2307/2284382
http://dx.doi.org/doi:10.1016/j.jtbi.2005.06.009


Detecting kin selection A. Grafen 719
Hamilton, W. D. 1964 The genetical evolution of social
behaviour. J. Theor. Biol. 7, 1–52. (doi:10.1016/0022-
5193(64)90038-4)

Hamilton, W. D. 1970 Selfish and spiteful behaviour in an
evolutionary model. Nature 228, 1218–1220. (doi:10.
1038/2281218a0)

Hamilton, W. D. 1975 Innate social aptitudes of man: an
approach fromevolutionarygenetics. InBiosocial anthropology
(ed. R. Fox), pp. 133–153. London, UK: Malaby Press.

Killingback, T., Bieri, J. & Flatt, T. 2006 Evolution in group-
structured populations can resolve the tragedy of the
commons. Proc. R. Soc. B 273, 1477–1481. (doi:10.1098/
rspb.2006.3476)

Lehmann, L. & Keller, L. 2006 The evolution of
cooperation and altruism: a general framework and a
classification of models. J. Evol. Biol. 19, 1365–1376.
(doi:10.1111/j.1420-9101.2006.01119.x)

Rousset, F. 2004 Genetic structure and selection in subdivided
populations. Princeton, NJ: Princeton University Press.
Proc. R. Soc. B (2007)
Taylor, P. D. 1990 Allele-frequency change in a class-
structured population. Am. Nat. 135, 95–106. (doi:10.
1086/285034)

Taylor, P. D. 1996 Inclusive fitness arguments in genetic
models of behaviour. J. Math. Biol. 34, 654–674.

Taylor, P. D. & Frank, S. A. 1996How tomake a kin selection
model. J. Theor. Biol. 180, 27–37. (doi:10.1006/jtbi.1996.
0075)

Taylor, P. D., Irwin, A. & Day, T. 2000 Inclusive fitness in
finite deme-structured and stepping-stone populations.
Selection 1, 83–93.

Wild,G. &Taylor, P.D. 2004Fitness and evolutionary stability
in game theoretic models of finite populations. Proc. R. Soc.
B 271, 2345–2349. (doi:10.1098/rspb.2004.2862)

Wolfram Research, Inc. 2005 Mathematica, Version 5.2.
Champaign, IL.

Wright, S. 1969 Evolution and the genetics of populations,
volume 2: the theory of gene frequencies. Chicago, IL:
University of Chicago Press.

http://dx.doi.org/doi:10.1016/0022-5193(64)90038-4
http://dx.doi.org/doi:10.1016/0022-5193(64)90038-4
http://dx.doi.org/doi:10.1038/2281218a0
http://dx.doi.org/doi:10.1038/2281218a0
http://dx.doi.org/doi:10.1098/rspb.2006.3476
http://dx.doi.org/doi:10.1098/rspb.2006.3476
http://dx.doi.org/doi:10.1111/j.1420-9101.2006.01119.x
http://dx.doi.org/doi:10.1086/285034
http://dx.doi.org/doi:10.1086/285034
http://dx.doi.org/doi:10.1006/jtbi.1996.0075
http://dx.doi.org/doi:10.1006/jtbi.1996.0075
http://dx.doi.org/doi:10.1098/rspb.2004.2862

	Detecting kin selection at work using inclusive fitness
	Introduction
	The varying group size model of Killingback et al. (2006)
	The extent of common ancestry
	Results
	Discussion
	Dr David Stirzaker gave timely advice on probability generating functions, and Alexis Gallagher, Mark Rendel, Dr Francisco Úbeda de Torres and Dr Marco Archetti made helpful comments on an earlier manuscript. I am particularly grateful to Prof. Peter T...
	Defining and implementing the models
	Group and clone sizes
	Relatedness through analysis
	References


