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Abstract

Biological explanations are given of three main uninterpreted theoretical results on the selection of altruism in inelastic viscous
homogeneous populations, namely that non-overlapping generations hinder the evolution of altruism, fecundity effects are more
conducive to altruism than survival effects, and one demographic regime (so-called death–birth) permits altruism whereas another (so-
called birth–death) does not. The central idea is ‘circles of compensation’, which measure how far the effects of density dependence
extend from a focal individual. Relatednesses can then be calculated that compensate for density dependence. There is very generally a
‘balancing circle of compensation’, at which the viscosity of the population slows up selection of altruism, but does not affect its
direction, and this holds for altruism towards any individual, not just immediate neighbours. These explanations are possible because of
recent advances in the theory of inclusive fitness on graphs. The assumption of node bitransitivity in that recent theory is relaxed to node
transitivity and symmetry of the dispersal matrix, and new formulae show how to calculate relatedness from dispersal and vice versa.
r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Recent work of Taylor et al. (2007a, henceforth TDW)
has uncovered a striking natural structure in the theory of
the natural selection of altruism in inelastic homogeneous
populations, that is where the total population size is fixed
and all individuals are equivalent. Here, we develop this
natural structure, creating concepts and establishing
mathematical results, focussing on calculating the central
concept of relatedness, and basing interpretations on it.
The new ideas prove their worth by allowing an explana-
tion for each of three main existing results about selection
in viscous populations, namely that the Fisher–Wright
demographic process is not conducive to neighbourly
altruism while the Moran demographic process is (Taylor
and Irwin, 2000; Irwin and Taylor, 2001); that fecundity
effects are more conducive to altruism than survival effects;

and that within the Moran process, the ‘birth–death’
replacement scheme is not conducive to neighbourly
altruism while the ‘death–birth’ scheme is (Ohtsuki et al.,
2006; Taylor et al., 2007a). There are more fundamental
results about ‘Isolation by Distance’ models, recently
reviewed by Rousset (2004), which underpin and justify
many of the arguments in this paper, but which do not
require any further explanation. The three mentioned have
had no clear biological interpretation, and are the main
unexplained results in the literature: a single explanation is
now offered here.
The balance between relatedness to neighbours and

increased competition between neighbours has been much
discussed (e.g. Hamilton, 1971; Grafen, 1984; Queller,
1994; Kelly, 1994; Rousset, 2004; Gardner and West,
2004). Earlier work tended to show that the two forces
cancelled each other out (Taylor, 1992a, b; Wilson et al.,
1992). Much recent work has focussed on more complex
situations, with elastic environments (Lehmann et al.,
2006) sometimes associated with parasitism (Gardner et al.,
2004) or non-independent dispersal through budding
(Gardner and West, 2006), multiple traits such as punishment
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(Lehmann et al., 2007b), or finite but non-Poisson
offspring number (Lehmann and Balloux, 2007). The
strong results of TDW, and as developed here, are in
the inelastic homogeneous case, but the simple theory is
one important preparation for the complex.

An important technical result is the relaxation of TDW’s
condition for what counts as homogeneity of a population.
They required node bitransitivity, to ensure that the
dispersal matrix and the identity-by-descent matrix com-
mute. Here we show that node transitivity combined with
symmetry of the dispersal matrix will do instead. Indeed,
the condition actually required is strictly weaker still, but
less biologically meaningful. This technical work is con-
ducted in Appendix B. It relies on being able to measure
relatedness in stationary populations (see Rousset, 2004,
p. 120), and its interpretation is greatly enhanced by the
knowing that an expected increase in gene frequency, an
enhanced probability of fixation and a higher inclusive
fitness are all equivalent under weak selection (Rousset and
Billiard, 2000; Taylor et al., 2000; Rousset, 2004; Wild and
Taylor, 2004), which we assume throughout.

In Section 2, we introduce the concepts of ‘g-circles’
and compensated relatednesses, which are biologically
meaningful ways of understanding the effects of density
dependence on the selection of altruism. Section 3 looks
at the properties of compensated relatednesses under
the Moran and Fisher–Wright demographic schemes,
while Section 4 provides numerical illustrations, considers
whether it is useful to discuss altruism in terms of the
original parameters b and c instead of the offspring number
after density dependence, and explains the difference
between the death–birth and birth–death replacement
schemes. The discussion in Section 5 considers the limit-
ations of the theory. Appendix A finds explicit equations
for uncompensated and compensated relatedness in terms
of dispersal and vice versa, providing a firm theoretical
understanding of the model.

It is worth noting here that we use relatedness based on
identity by state, following Hamilton (1970) and many later
authors, which measures a statistical association between
alleles; rather than relatedness based on pedigrees as first
used in connection with social behaviour by Hamilton
(1964).

2. g-circles and compensated relatedness

We begin by reviewing how graph theory is applied to
population modelling by Taylor et al. (2007a). The simplest
interpretation, and the one we shall follow, is that the range
of the species is divided into territories or areas that are
occupied by one individual at a time. In graph theory, each
territory is represented by a node. When an individual
at node i dies, she is replaced, and the parent of the
replacement comes from different nodes with different
probabilities. The notation dij means the probability that
the parent of the individual at node i occupied node j
(TDW insisted that an individual could not replace herself,

so dii ¼ 0, but we do not make that requirement here). As
an extension, we also use dð2Þ

ij for the probability that the
grandparent of the individual at node i occupied node j,
and in general d ðgÞ

ij for the probability that the gth ancestor
did. These probabilities apply in the null model without
selection, where all individuals are playing the same
strategy. We assume that dij satisfy two simple symmetry
assumptions—(i) that dij ¼ dji and (ii) node transitivity,
which says all nodes look the same. (More precisely, node
transitivity means that for each pair of nodes, there exists a
permutation of all nodes that carries the first of the pair to
the second, and leaves the dispersal matrix unchanged.)
For a formal statement, and a discussion of the weakening
compared to TDW’s assumptions, see Appendix B.
The basic circumstance of inclusive fitness is that an

actor accepts a cost c and donates a benefit b to a recipient.
But in a population of constant size, the benefit b must be
compensated somewhere by losses to other individuals.
Sometimes authors speak of a ‘bland density dependence’
in which all individuals in the population share equally in
these compensating losses. But density dependence is likely
to be local in a viscous population, and the crucial question
is: who are those individuals that pay the compensation?
There is no fixed answer, but we construct a series of
‘circles of neighbours’, called the 0-circle, 1-circle, 2-circle,
etc., and assume that the compensation will be paid by
1-circle, or possibly spread across the circles. Circle is not
intended in a geometric sense, but as in the ordinary
language phrase ‘social circle’. Each circle is like a
probability distribution over the population, and indivi-
duals can belong to quantitatively different extents. The
general principle is that the g-circle of the recipient contains
nodes according to the probability that they contained the
gth ancestor of the recipient. Under our symmetry
assumptions, this is equal to the probability that the
node’s gth ancestor occupied the recipient’s node. Thus,
the 0-circle is just the recipient herself. The 1-circle of the
recipient contains individuals according to the probability
that, should the recipient die, that individual would supply
the offspring that replaced her. We can think of those
individuals as the likely parents (or offspring) of the
recipient or, more accurately, as occupying the nodes
that were occupied by the parent (or offspring) of the
recipient. The 2-circles are the likely grandparents (or
grandoffspring).
How might circles be relevant to understanding density-

dependent compensation? If the cost to an individual is a
chance of dying, then the beneficiaries will be the 1-circle,
who will supply the offspring to replace the individual. Or,
suppose an individual produces more offspring, who
disperse as usual. If they compete with existing adults in
the 1-circle, then the success of the offspring is the loss
of those members of the 1-circle. If instead they compete
with offspring who have dispersed from their parents’
nodes, compensation falls on the 2-circle. This is because
the aggregate of the 1-circle around the members of an
individual’s 1-circle is precisely the 2-circle of that original
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individual. Moving outwards, if one individual could help
its offspring to have more offspring themselves (for
example, by extra parental care or tuition in parenting
skills), then compensation could spread to the 3-circle.
If offspring of different parents compete, and move away
from more to less competitive arenas, then competition
could be spread to more distant circles. Thus the circles are
flexible constructs for describing the impact of density-
dependent compensation.

Applying the concept of g-circle to an island model may
help explain it further. Suppose we have N individuals in
each of M islands, and that an individual is replaced by an
offspring of a random fellow-islander with probability b
and of a random member of the population with
probability 1$ b. In each case, the random choice includes
the individual itself. Then the 1-circle contains self and
each fellow-islander with a weight of b=N þ ð1$ bÞ=ðMNÞ,
and each other individual with a weight of ð1$ bÞ=ðMNÞ.
The g-circle alters those weights to bg=N þ ð1$ bgÞ=ðMNÞ
and ð1$ bgÞ=ðMNÞ, respectively. Provided bo1, therefore,
the weighting shifts to diminish the difference between
fellow-islanders and others.

The second concept is ‘compensated relatedness’, short
for ‘density-dependent compensated relatedness’. Suppose
an actor gives b to a recipient with relatedness r, and that
the density-dependent compensation is paid by some circle
of the recipient, whose average relatedness to the actor is
re. Then the two effects are rb and $reb. The net effect for
the inclusive fitness of the actor is ðr$ reÞb, and it is natural
to call r$ re the compensated relatedness of the actor to
the recipient. Of course, re will depend on which g-circle
pays the compensation, but there is no way of avoiding
this complication. We will use the notation ~rijðgÞ to mean
the compensated relatedness of individual i to individual j,
when the fitness effect on j is compensated in her g-circle.
The basic idea of subtracting the relatedness of those
individuals that suffer density-dependent compensation
from the relatedness of the primary individual to produce a
net relatedness has been employed before (e.g. Taylor and
Irwin, 2000; Gardner et al., 2004; Gardner and West, 2004,
2006), but the indexing by circle of compensation is new.

A more general notation is needed when the compensa-
tion is felt by circles according to a probability distribution
t. For example, t1 ¼ t2 ¼ 1=2 would mean that half the
compensation was felt by the 1-circle and half by the
2-circle. We will refer to the t-circle as the mixture of the
g-circles and write the compensated relatednesses as ~rijðtÞ.
If at each generation offspring are distributed to circles
according to the probability distribution t, then k gener-
ations later, there will be a particular distribution of the
descendants. Mathematically, that distribution is the ‘kth
self-convolution’ of t, and that concept will be needed
below. Formally we can think of an integer value for t as
representing the probability distribution over the integers
which places all probability on that particular integer.

Similarly, the cost c paid by the actor will also have
density-dependent effects, and so ~riiðhÞ will be the compen-

sated relatedness of the actor to herself when the density-
dependent compensation will be paid by her own h-circle.
We need to use a different symbol, because there is no
necessary reason why the cost and benefit should be
compensated by the same circle. For example, if an actor
risks her life to help a neighbour reproduce, then it is likely
that h ¼ 1 because her death would benefit the 1-circle,
while the neighbour’s reproduction might be compensated
by the 2-circle.
The compensated relatednesses as defined are useful, but

lack the appealing property that relatedness to self is 1.
It is therefore convenient to define a further system of
relatednesses closely based on the first, but restoring that
property. Using ~r for actor-referenced compensated
relatednesses, we write

~rijðstÞ ¼
~rijðtÞ
~riiðsÞ

.

These relatednesses have the property that relatedness to
self is always 1, provided compensation for actor and
recipient is in the same circle, but they are in some ways
more complicated. They are doubly-indexed by compensa-
tion circle, as it is necessary to state both the circle for the
actor (s) and the circle for the recipient (t). Some of the
tables in Section 4 are in terms of ~r as this is sometimes
easier to interpret.
We are now in a position to write down the inclusive

fitness effect of an actor i in the classic position of accepting
a cost c to give a benefit b to recipient j, where the density-
dependent compensation will be paid by the actor’s h-circle
and the recipient’s g-circle:

~rijðgÞb$ ~riiðhÞc

which has the same sign as

~rijðhgÞb$ c. (1)

Fundamental work (Rousset and Billiard, 2000; Taylor
et al., 2000, 2007b; Rousset, 2004; Wild and Taylor, 2004),
goes some way towards proving that selection proceeds
according to this quantity in all the circumstances required,
so we will conclude that the action will be selected for if the
inclusive fitness effect is positive and against if it is
negative. There are important subtleties in that literature,
but irrelevant to present purposes, about exactly what
being favoured by natural selection means in finite
populations. Here we proceed in succeeding sections to
study how ~rijðgÞ and ~rijðhgÞ behave, depending on the relative
positions of individuals i and j and on the values of g and h.

3. Properties of compensated relatednesses

The main pattern in the balance between relatedness and
competition is already clear in outline, in light of the
g-circles introduced in the previous section. If compensa-
tion is distant enough, then the relatedness caused by
viscosity will dominate, while if compensation is very local,
competition will be a powerful force. But, how powerful?
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And at what point does the balance tip between favouring
altruism to neighbours and favouring spite towards
neighbours? TDW provided the key to answering these
questions, and here their answers are extended. After
deriving general results, we look in more detail at the
‘Moran process’ in which one individual at a time dies and
is replaced in the population, or the ‘Fisher–Wright
process’, in which all individuals die and are replaced
simultaneously (see Ewens, 2004, for origins and develop-
ment of these processes).

The first generalisation is to adopt the Cannings process
(Ewens, 2004) and allow a mixture of the Moran and
Fisher–Wright processes (following e.g. Irwin and Taylor,
2001; Lehmann et al., 2007a). The Cannings process
operates by supposing that at each ‘step’, each individual
has an independent probability s of surviving, and 1$ s of
dying and being replaced. Replacement happens according
to the dispersal matrix. We also introduce a notation cij
that is defined as

cij ¼
2s

1þ s
dij þ

1$ s

1þ s
d ð2Þ
ij (2)

which is interpreted as follows. Suppose we locate an
ancestor of the individual at node i, to be more specific we
choose to locate the parent with chance ð2sÞ=ð1þ sÞ and the
grandparent with chance ð1$ sÞ=ð1þ sÞ. Then the prob-
ability of that ancestor having occupied node j is cij .

It is now time to define the central concept of ‘balancing
compensation’. This is a particular distribution of com-
pensation between circles represented by t1 ¼ 2s=ð1þ sÞ
and t2 ¼ ð1$ sÞ=ð1þ sÞ. t has up to now represented a
general probability distribution, but from now on will refer
to this particular one. Compensation in the t-circle is called
balancing compensation because Eq. (10) of Appendix A
generalises a result of TDW to show that the following
compensated relatednesses hold in this case

ð1$ rtÞ$1 ~rijðtÞ ¼
1 i ¼ j

$1

n$ 1
iaj;

8
<

: (3)

where rt is the relatedness of an individual to its own
t-circle and n is the population size. The relatednesses that
hold under balancing compensation have two remarkable
features. The compensated relatedness to a neighbour is
just the same as to any other individual in the population,
so spatial structure of the population creates no spatial
structure in the compensated relatednesses. Second, the
values are in the same proportion (1 to self, $1=ðn$ 1Þ
to others) as in an unstructured, panmictic population.
With t-circle compensation, therefore, the viscosity of the
population should make no difference to the direction
of natural selection of social behaviour, and this holds
for altruism towards any individual, not just immediate
neighbours. The speed of selection is slowed down by the
factor 1$ rt, and this is not surprising. If all fitness effects
are compensated locally, on related individuals, then the

net effect on an allele is inevitably proportionally reduced
according to the strength of the relatedness.
This knife-edge result is also significant for what it

suggests about either side of the blade. If compensation is
closer to the actor than the balancing compensation, then
neighbours are negatively valued, and closer neighbours
more so. If compensation is more distant, then neighbours
are positively valued, and closer neighbours more so.
The three major findings in the literature may be

interpreted in terms of this balancing compensation.
Taylor and Irwin (2000) and Irwin and Taylor (2001)
showed that non-overlapping generations were less con-
ducive to neighbourly altruism than overlapping genera-
tions, and that fitness effects through fecundity were more
favourable to altruism than survival effects. These effects
are explained as follows. Effects through survival have g ¼
1 (i.e. density dependence falls on individuals one dispersal
step away), while effects through fecundity have g ¼ 2
(i.e. density dependence falls on individuals two dispersal
steps away). The balancing circle is the t-circle which is
a mixture with 2s=ð1þ sÞ of g ¼ 1 and ð1$ sÞ=ð1þ sÞ of
g ¼ 2. The density dependence of survival effects is always
closer than that of fecundity effects, and so competition has
a higher strength compared to relatedness. As generations
overlap more, i.e. s increases, the balancing circle moves
back towards the 1-circle, giving a larger margin of
advantage to the fecundity effects at g ¼ 2, and a smaller
margin of disadvantage to the survival effects at g ¼ 1. We
can also see that neighbourly altruism is possible with non-
overlapping generations provided the compensation is
more widespread than g ¼ 2. We will look more at this in
Sections 3.2 and 4.
The third finding (Ohtsuki et al., 2006; Ohtsuki and

Nowak, 2006; Grafen, 2007; Lehmann et al., 2007a) is that
the so-called DB and BD demographic schemes differ
in their capacity to support altruism. DB means that a
random individual dies, and then neighbours compete
to replace her, and their altruism affects those chances
of replacement. BD means that an individual is chosen to
reproduce according to the effects of altruism, and then a
random neighbour dies to make space. As TDW point out,
though not in these terms, compensation is in the 1-circle in
the BD scheme but in the 2-circle in the DB scheme.
Balancing compensation in the Moran scheme is in the
1-circle, and this implies altruism will not spread in the BD
scheme, as g ¼ 1, but will spread in the DB scheme, where
g ¼ 2. However, the order of birth and death cannot by
itself be biologically significant, and we clear up this point
when we look at numerical examples in Section 4.
The conclusions of this section hold very generally

because the assumptions are very general. The population
can be of any size, and the symmetry assumptions permit a
wide range of structures. Roughly, cycles and grids in
which immediate neighbours all have equal dij while all
others are zero are included. But self-replacement is also
allowed, as is a tiered structure in which near neighbours
have a high chance of replacing the individual while more
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distant neighbours have a lower chance. For a discussion of
the limitations, see Section 5.

The rest of the paper looks at various special cases. The
Moran and Fisher–Wright models have particular proper-
ties it is worthwhile to investigate in succeeding subsec-
tions. Then the following section looks at numerical
examples.

3.1. The Moran process

Here we pursue further the patterns of compensated
relatedness by restricting ourselves, for the moment, to the
Moran process in which one individual at a time dies and is
replaced. This corresponds to approaching the limit s ¼ 1
in the general case, so far as asymptotic relatednesses are
concerned, but we must take a moment to establish this
point. As s approaches 1, a higher and higher fraction of
generations have zero deaths, but the population is
completely unchanged after one of those generations. Of
the generations with at least one death, a higher and higher
fraction have exactly one death, and so the relatednesses
increasingly approximate the Moran case. However, the
Moran case is not the same as s ¼ 1 in all respects.
The dynamics of probability of identity by descent are not
the same, because the Moran case has exactly one death per
generation while, as already mentioned, as the limit s ¼ 1 is
approached, many generations have no deaths.

When we take the limit to s ¼ 1 in the general case, and
when density-dependent compensation falls on the 1-circle,
the relatedness and competition effects of viscosity exactly
cancel each other out. TDW show that when density
dependence is felt by the 2-circle, however, the cancellation
is not complete. The values of the relatednesses ~rijð2Þ are
instead as follows:

ð1$ r1Þ$1 n$ 1

n
~rijð2Þ ¼

1þ dii $
1

n
i ¼ j

dij $
1

n
iaj:

8
>><

>>:
(4)

How should these values be interpreted? An individual
values a neighbour according to the probability that they
replace each other, minus 1=n, which is the probability they
would replace each other if replacement were completely at
random. Thus an individual is valued according to its
‘excess replacement probability’. An individual values itself
with an additional 1 over and above this excess replace-
ment probability. Note also that relatedness to those with
zero chance of replacing an individual is negative.

The directness of this result is interesting. Although
relatedness builds up over generations, it seems that all the
building up beyond the simple one-generation connection
is cancelled out by the density-dependent compensation.
Taking this further, the local nature of interactions means
that overall gene frequencies are actually unimportant to
the selection of neighbourly altruism. The key role played
by the population gene frequency in the calculation of
relatednesses (Grafen, 1985; Queller and Goodknight,

1989) has always seemed rather curious, as it suggests that
if we study one population we cannot say how selection
should proceed, but need to know the gene frequency of the
whole species. The formulation of compensated related-
nesses expresses a useful and affirming response to this
concern about the relevance of far-flung populations. The
discussion of this paragraph echoes that of Rousset (2004,
p. 110).
The g ¼ 3 result provides ~rijð3Þ through

ð1$ r1Þ$1 ~rijð3Þ ¼
1þ dii $

1

n

! "
þ d ð2Þ

ii $
1

n

! "
i ¼ j

dij $
1

n

! "
þ d ð2Þ

ij $
1

n

! "
iaj:

8
>>><

>>>:

Going out to a further circle has the effect of adding an
extra term on the right-hand side. We add the probability
of a double-dispersal-event link between the sites occupied
by the individuals, again minus the probability expected in
a completely random model.
It is clear that the pattern will be continued for higher g

by adding in the ‘excess replacement probability in g steps’
to the right-hand side. It is interesting that individuals
completely unconnected in g steps of dispersal acquire
more and more negative relatednesses. Of course, the
number of such individuals decreases as g increases, as
eventually all individuals in a connected population will be
kin of some kind, following the ‘inbreeding paradox’ of
Seger (1981).
A final result in this section is about the ‘infinite circle’,

i.e. g ¼ 1, where with a caveat about technical conditions
of very limited empirical significance, the density depen-
dence is compensated so remotely that it falls evenly on
the whole population. Then, as shown in Appendix A, the
compensated relatedness (~rijð1Þ) equals the uncompensated
relatedness (rij), as would be expected. This calculation
provides an explicit formula for relatedness in terms of
dispersal (and vice versa).
The main conclusion for the Moran process is that

compensation in the 1-circle creates neighbourly neutrality,
but that if compensation is spread any more widely
then individuals should be altruistic to their neighbours,
and more altruistic to closer neighbours. The wider the
compensation is spread, the stronger that altruism should
be, until with very wide compensation, neighbours should
be treated according to their uncompensated relatednesses.
It was noted earlier that the parental probabilities and

grandparental probabilities are more relevant, when
compensation is felt locally, than the uncompensated
relatednesses. Thus estimations of relatedness from genetic
data cannot be automatically applied to the question of
neighbourly altruism. One solution is to make separate
field observations of the dij , to allow the compensated
relatednesses to be calculated. An alternative is to use
Eq. (11) to infer the dij from the relatednesses, obtaining
the relatednesses from DNA samples, and so infer from
molecular biological data what the pattern of neighbourly
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altruism should be. There are many practical problems
with this second possibility, but it seems a useful route, and
could involve building on existing methods of calculating
relatednesses (Queller and Goodknight, 1989) and Wright’s
F-statistics (Fontanillas et al., 2004) from genetic data. This
possibility would be especially attractive if the framework
could be extended in detail to diploid sexual organisms.

3.2. The Fisher–Wright process

Under the Fisher–Wright process, we take s ¼ 0 in
Eqs. (2) and (3) to see that the balancing compensation is in
the 2-circle. The compensation must therefore be spread
more broadly under Fisher–Wright than under Moran to
obtain neighbourly altruism. First we discuss two phenom-
ena that occur in the Fisher–Wright process, and so
increasingly as s approaches 0, namely inverted related-
nesses to close neighbours, and the ‘sawtooth effect’.

Inverted relatednesses occur when compensation is to the
1-circle, for then competition outweighs relatedness, and
local relatednesses are negative. Formally, it means that ~rijð1Þ
will have negative values between close neighbours, and
more negative than between distant neighbours. We look at
this phenomenon in the numerical example in Section 4.

The ‘sawtooth effect’ is shown in Appendix C to be linked
to the inverted relatednesses. If D is fully regular (see
Appendix A), then the compensated relatednesses converge
as g increases. But if D has an eigenvalue close to $1, then
there are inverted relatednesses, and the convergence will be
alternating. The sawtooth pattern seems likely to be rightly
regarded as an artefact of the model, and unlikely to be
encountered in nature. It is important to understand it when
interpreting models, however. A linked effect is the ‘checker-
board effect’, discussed in the numerical examples in Section 4.

The simplest form of the checkerboard effect occurs on a
torus with an even number of nodes in each of the basic
cycles, which we imagine spreading out as a square, and
think of as a chess board. If all dispersal is to one of the
four immediate neighbour nodes, then all individuals on
white squares leave offspring in black squares and vice
versa, and therefore all the grandoffspring of individuals
on white squares are on white squares. As shown in
Appendix A, relatedness cannot even be defined in this
case, at least not in the usual way. Partial effects arise in
less extreme cases. For example, if the grid just mentioned
has odd sides, then there is a distant connection between an
individual and its immediate neighbours, and those
relatednesses are actually the lowest, because the ancestral
path must go all around the grid.

We now turn to the selection of neighbourly altruism in
the Fisher–Wright process, and assume for the moment
that compensation is felt in the 4-circle:

ð1$ r2Þ$1 n$ 1

n
~rijð4Þ ¼

1þ dð2Þ
ii $

1

n
i ¼ j

d ð2Þ
ij $

1

n
iaj:

8
>><

>>:

Thus g ¼ 4 has a reasonably similar pattern in the
Fisher–Wright process to the g ¼ 2 case in the Moran
process, with the substitution of grandparental probabil-
ities for parental probabilities. Here we see the expected
spatial pattern in which close neighbours are favoured
more than distant neighbours. Fisher–Wright compensated
relatednesses are likely to be lower for nearby individuals,
as in general grandparental chances (dð2Þ

ij ) are ‘smeared out’
spatially and so generally lower than parental chances (dij).
The most important finding here is that the tendency

found by Taylor and Irwin (2000) and Irwin and Taylor
(2001) for non-overlapping generations to prevent neigh-
bourly altruism is by no means absolute. There can be
positive spite to neighbours at g ¼ 1, there is indifference at
g ¼ 2, but neighbourly altruism can be selected, even if at
levels likely to be somewhat lower than in the Moran case,
when density-dependent compensation extends to g ¼ 4 or
higher. Once compensation is very widely spread, then
neighbours should be treated according to their uncom-
pensated relatednesses, and these are generally lower than
apply under the Moran process, but can still be substantial.
There is one factor that partially reverses some of this

tendency for Fisher–Wright to produce less neighbourly
altruism than Moran. So far, the comparisons have been
made between the two processes at the same circle.
Consider, however, the effect of an individual producing
more offspring in the Fisher–Wright and Moran cases. In
the Moran case, if those offspring compete with adults for
their existing territories, then compensation is in the 1-
circle. In the Fisher–Wright case this is impossible, and the
offspring will be competing with other offspring from the
1-circle of the original individual’s 1-circle, that is,
compensation will fall on the 2-circle. Thus the very force
that pushes out the balancing compensation to g ¼ 2 in the
Fisher–Wright case, also means that at least in some cases,
the fair comparison is between g ¼ 1 for Moran, and g ¼ 2
for Fisher–Wright. More generally, it may sometimes be
fairer to compare the compensated relatednesses for the
t-circle, and of course these are in the same proportions in
the two schemes as well as spatially unstructured. None of
this diminishes the significance of the lower uncompensated
relatednesses to neighbours in the Fisher–Wright scheme,
and this effect is bound to emerge in cases where
compensation is spread very widely so that the compen-
sated relatednesses approach the uncompensated related-
nesses.

4. Numerical calculations on regular grids

The previous sections have been carried out in consider-
able generality. Here we apply the general formulae in
simple grids and obtain numerical values for the various
quantities. These grids are equivalent to the lattice models
introduced by Malécot (1948, 1950) and reviewed by
Rousset (2004, Chapter 3), who solves analytically for
identity by descent coefficients using Fourier analysis.
Here, we limit ourselves to showing numerical patterns of
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relatedness, both compensated and uncompensated. In
Section 4.1, the numerical examples are used to explain in a
very concrete way what dij look like, and how compensated
relatednesses are derived from relatednesses. Section 4.2
explains that, although the two demographic schemes (BD
and DB) have different outcomes, this is, contrary to the
suggestion of the names, not to do with the order of birth
and death. Section 4.3 considers what is at stake when, as
seems natural here, altruism is redefined in terms of the
score rather than the fitness consequences.

We constructed cycles (k ¼ 2) and regular toroidal
graphs with different numbers of neighbours (k ¼ 3; 4;
6; 8). The patterns of connections are illustrated in Fig. 1.
Ohtsuki et al. (2006) set dij ¼ 1=k for the k immediate
neighbours. We follow them closely but not exactly in our
choice of connection strengths. In order to avoid biologi-
cally unimportant problems of a technical nature, we
permit a small probability (1=121) that an individual will
replace herself. The remaining probability 120=121 is
divided equally between the k immediate neighbours.
These patterns satisfy the assumptions of symmetry and
node transitivity. The population size, n, is also varied,
taking the values 64, 196 and 400. (Note that an explicit
algebraic formula for relatednesses in the cycle with dij ¼
1=2 between neighbours is given by Grafen, 2007.)

A number of other parameters were varied. The gener-
ational scheme was either Moran (one individual dies and
is replaced at each step, s ¼ 1 in terms of the general
model) or Fisher–Wright (all individuals die and are
replaced at each step, s ¼ 0). We calculated relatednesses
exactly in each case, by solving a matrix equation in the

rationals, based on Eq. (8), using Mathematica 5.2
(Wolfram Research, Inc., 2005). Compensated related-
nesses were then easy to derive, as shown in Appendix A.
The uncompensated relatednesses are of interest, not

only as measuring how much genetic similarity to expect
under different population structures, but also as the
limiting case of compensated relatednesses as density-
dependent compensation becomes very widely spread.
Table 1 shows relatedness to the four closest type of
neighbours across the range of structures studied. The
greater the population size, the greater is r to neighbours,
partly because the overall negative tendency of relatedness
to another individual is lower ($1=ðn$ 1Þ), and partly
because the neighbours are proportionally closer compared
to the population as a whole. Relatedness to the most
distant individuals becomes less negative as population size
increases. Second, the more neighbours, the lower is r, as
the genetic similarity is spread between more individuals.
The Fisher–Wright results are affected by inverted
relatednesses and the sawtooth effect, to be discussed
shortly. Third, apart from the inverted relatednesses,
relatedness decreases as neighbours become more distant,
which is the primary geographical pattern.
Fig. 2 shows how uncompensated relatednesses vary

over the whole population in special cases of the Moran
and Fisher–Wright schemes, and also shows the difference
between them. Nearby relatednesses are lower under
Fisher–Wright, while the most distant relatednesses are
less negative, preserving the important property that the
sum of relatednesses over the population equals zero.
Compensated relatednesses to self are shown in Table 2.

This shows the strength of the effect of the circle of
compensation on the true cost of being altruistic, and it will
be seen that rather rapidly the compensated relatedness
approaches the uncompensated relatedness (which is 1). It
also shows that we can have compensated relatednesses
greater than 1, when the compensation is felt by a circle
with a negative relatedness to the actor (Fisher–Wright
cases with k ¼ 3; 4). The values in even generations go up,
as the theory in Appendix C shows. The odd generations
are affected by sawtoothing, as discussed in Section 3.2 and
Appendix C. With larger k, neighbours of an individual are
also each others’ neighbours, introducing paths back to self
with an odd number of segments, which diminishes the
strength of this checkerboarding. Finally, as Rousset (2004,
p. 4) points out, viscosity gives even apparently non-social
behaviour a social aspect, as selection on non-social traits
must still be compensated. The compensated relatednesses
to self show how strong the selection is to choose the circle
of compensation with the highest value of r. This will
usually mean widening the circle, but while the sawtooth-
ing is important, there are also sharp differences between
adjacent even and odd circles, especially in the Fisher–
Wright case and for small k.
Actor-referenced compensated relatednesses are shown

in Table 3. We first point out that balancing compensation
takes place, as shown analytically earlier, with g ¼ 1 for the
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Fig. 1. The figure shows how an individual is connected to neighbours in a
cycle (k ¼ 2), or in a square grid pattern (kX3) wrapped on a torus. With
k ¼ 3, there are two kinds of individuals, those connected to the neighbour
on the right (shown in black), and those connected to the neighbour on the
left (shown in grey).

A. Grafen, M. Archetti / Journal of Theoretical Biology 252 (2008) 694–710700



Author's personal copy

Moran process and with g ¼ 2 for the Fisher–Wright
process. This is seen in the equal small negative values for
all b greater than 1 in the relevant parts of the table. The
larger is k, the lower the tendency to be altruistic to an
individual neighbour. Further, we can see the inverted
compensated relatednesses with g ¼ 1 in the Fisher–Wright
case, where they are most negative to the nearest
neighbour, and become less negative for more distant
neighbours. In general, the Fisher–Wright relatednesses are
lower, with negative values at g ¼ 1, neutrality at g ¼ 2,
and lower positive values for wider compensation, extend-
ing to lower uncompensated relatednesses.

Relatednesses are shown arrayed spatially in Fig. 3. The
Fisher–Wright values illustrate the checkerboard effect,
with the effects shown graphically in Fig. 4. An individual
can share a gene with a neighbour two steps away quite
easily, simply by both neighbours being the offspring from
the node in between. However, to share a gene with an
immediate neighbour, the path of ancestry must include at
least one unlikely event—in this particular example, of self-
replacement, whose probability is only 1=121. Paths linking
immediate neighbours are therefore longer and more
indirect, and the result is that an individual is less related
to her immediate neighbour than to the neighbour beyond
that. In considering the implications of this model for
realistic biological situations, it is not impossible that
compulsory movers might ‘step round’ each other, but
it is most unlikely that such strong separation would
arise. Nevertheless, modellers must be aware of these
phenomena.

In general, the theory inspired by TDW brings great
order to the understanding of these calculations, which are

able to illustrate some important patterns. But it must
not be forgotten that the general theory applies to much
more general dispersal regimes. There can be different
strengths of links, and not just to immediate spatial
neighbours, for example. Only a small part of the
implications of the general theory can be illustrated with
these calculations.
All the calculations were carried out in Mathematica 5.2

(Wolfram Research, Inc., 2005).

4.1. Compensation explained in pictures

The purpose of this section is to clarify that the
expression for inclusive fitness using compensated related-
nesses is just a convenient shorthand for a much longer
expression, based on conventional relatednesses and
standard theory, in which each affected individual is
identified and included in the formula. Fig. 5 shows an
example of how density dependence alters the fitness of
individuals surrounding one that suffers an initial fitness
change, and identifies them for the sequel.
The nearest neighbours are affected with g ¼ 1

and the neighbours’ neighbours with g ¼ 2. That includes
some twice (because they are the neighbour of more
than one of the first circle of neighbours), some just
once, and the initial individual herself 4 times, as
she is a neighbour of each of her four neighbours.
Inclusive fitness theory (e.g. Grafen, 2006) tells us
that, writing out each neighbour’s contribution separately,
the net inclusive fitness effect for an individual i of
the whole set of changes, assuming the initial indivi-
dual is j ¼ 1 and the amount of the initial fitness change
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Table 1
Relatednesses in some simple networks, with three different population sizes, to self (b ¼ 1), to the nearest neighbours (b ¼ 2; 3) and to the most distant
individual in the population (b ¼ bmax)

Population size Circle Model

Moran Fisher–Wright

k ¼ 2 k ¼ 3 k ¼ 4 k ¼ 6 k ¼ 8 k ¼ 2 k ¼ 3 k ¼ 4 k ¼ 6 k ¼ 8

n ¼ 64 b ¼ 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
b ¼ 2 0.908 0.479 0.351 0.286 0.228 0.318 $0.182 $0.231 0.093 0.079
b ¼ 3 0.818 0.248 0.181 0.085 0.185 0.776 0.388 0.371 0.063 0.040
b ¼ 4 0.732 0.164 0.084 0.041 0.050 0.288 $0.191 0.300 0.024 0.041
b ¼ bmax $0.500 $0.205 $0.152 $0.110 $0.118 $0.330 0.054 0.129 $0.064 $0.066

n ¼ 256 b ¼ 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
b ¼ 2 0.977 0.595 0.492 0.435 0.372 0.771 0.028 $0.013 0.211 0.183
b ¼ 3 0.953 0.397 0.354 0.265 0.333 0.924 0.391 0.370 0.178 0.145
b ¼ 4 0.931 0.335 0.266 0.224 0.213 0.759 0.015 0.288 0.140 0.140
b ¼ bmax $0.500 $0.156 $0.114 $0.086 $0.096 $0.443 $0.068 $0.032 $0.053 $0.057

n ¼ 576 b ¼ 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
b ¼ 2 0.990 0.642 0.550 0.498 0.435 0.892 0.098 0.056 0.267 0.233
b ¼ 3 0.979 0.466 0.428 0.344 0.398 0.964 0.425 0.404 0.235 0.197
b ¼ 4 0.969 0.411 0.348 0.307 0.290 0.886 0.085 0.326 0.199 0.191
b ¼ bmax $0.500 $0.137 $0.100 $0.076 $0.086 $0.473 $0.074 $0.049 $0.049 $0.053

k indicates how many immediate neighbours there are. The dij are defined by dii ¼ 1=121, dij ¼ ð1=kÞð120=121Þ for the immediate k neighbours, and
dij ¼ 0 otherwise.
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was x, are

ri1x$ ð14ri2xþ 1
4ri3xþ 1

4ri4xþ 1
4ri5xÞ ðg ¼ 1Þ, (5)

ri1x$ ð14ri1xþ 1
8ri6xþ 1

16ri7xþ 1
8ri8xþ 1

16ri9x

þ 1
8ri10xþ 1

16ri11xþ 1
8ri12xþ 1

16ri13xÞ ðg ¼ 2Þ. (6)

As the compensation for x adds up to a total of x, we can
think of it as suffered by a composite individual, with the
average relatedness of the whole circle, where the average
must be weighted according to how much of the x falls on
each individual in the circle.

This could be calculated as the ‘economic relatedness’ re,
which would in these cases be

re ¼ ð14ri2 þ
1
4ri3 þ

1
4ri4 þ

1
4ri5Þ ðg ¼ 1Þ,

re ¼ ð14ri1 þ
1
8ri6 þ

1
16ri7 þ

1
8ri8 þ

1
16ri9

þ 1
8ri10 þ

1
16ri11 þ

1
8ri12 þ

1
16ri13Þ ðg ¼ 2Þ.

We can then write the inclusive fitness contribution as

ri1x$ rex. (7)

Grafen (1984), with some later authors, assumed that the
net effect of the action, b$ c, would be compensated
together, but Queller (1994) pointed out this is not
appropriate if the actor and recipient have different sets
of neighbours. The two methods would be equivalent in an
island model where altruism was to group-mates, but are
different in the more general setting of networks used here,
which also includes lattices.
The final step is then natural, to write Eq. (7) as ðri1 $ reÞ

x and to think of ri1 $ re as the compensated relatedness
for the effect on i’s inclusive fitness of individual 1 receiving
a fitness change of x. We notate it ~rijð1Þ or ~rijð2Þ according as
the circle bearing the compensation is 1 or 2. The whole
argument works whether i is 1 or not, though re will be
different, and so we can write, for an actor i losing c to give
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Fig. 2. Relatedness (uncompensated) to the central individual in a square ðk ¼ 4Þ 20& 20 grid. It begins at 1, and falls in a witch’s hat pattern. The average
relatedness is zero, and the low negative relatednesses to distant individuals reflect the higher positive values to a few neighbours. The values are generally
more moderate, i.e. closer to zero, under the Fisher–Wright scheme (a) than under the Moran scheme (b). The difference between the Moran and
Fisher–Wright relatednesses (c) is zero for the central value, and therefore hidden, but the nearest neighbours form the lip of the crater. All the near
neighbours are less related under Fisher–Wright, while the negative differences at the edge show that the negative values are less extreme too than in the
Moran case. In calculating the relatedness between two nodes in the Fisher–Wright case, it has to be taken into account that both occupants have been
replaced, while in Moran, only one has. The dispersal for this figure assumes dij ¼ 1=5 for self and each of the four immediate neighbours. This avoids the
sawtooth effect of Appendix C, and permits a comparison between the two processes. Note that allowing self-replacement does not affect the relatednesses
under the Moran process.
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b to individual j, the inclusive fitness effect of the act as

~rijðgÞb$ ~riiðgÞc

thus obtaining the desired endpoint.

We end this section by explaining how easily the critical
cost–benefit ratio can be calculated numerically. To
understand under which conditions altruism can evolve
we need to know the dispersal probabilities (dij), which are
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Table 2
Compensated relatednesses to self in some simple networks, at three different populations sizes, with five different circles of compensation

Population size Circle Model

Moran Fisher–Wright

k ¼ 2 k ¼ 3 k ¼ 4 k ¼ 6 k ¼ 8 k ¼ 2 k ¼ 3 k ¼ 4 k ¼ 6 k ¼ 8

n ¼ 64 g ¼ 1 0.650 0.633 0.643 0.709 0.787 0.845 1.177 1.220 0.900 0.933
g ¼ 2 0.331 0.518 0.639 0.703 0.781 0.351 0.430 0.502 0.779 0.840
g ¼ 3 0.644 0.734 0.789 0.810 0.867 0.840 1.172 1.217 0.894 0.926
g ¼ 4 0.412 0.679 0.783 0.841 0.894 0.438 0.567 0.619 0.897 0.932
g ¼ 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

n ¼ 256 g ¼ 1 0.349 0.490 0.504 0.560 0.642 0.428 0.969 1.005 0.782 0.829
g ¼ 2 0.178 0.406 0.506 0.563 0.645 0.213 0.417 0.502 0.682 0.752
g ¼ 3 0.347 0.577 0.629 0.653 0.722 0.426 0.969 1.007 0.785 0.832
g ¼ 4 0.224 0.538 0.630 0.683 0.751 0.267 0.553 0.624 0.792 0.842
g ¼ 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

n ¼ 576 g ¼ 1 0.238 0.432 0.446 0.498 0.578 0.279 0.899 0.937 0.727 0.778
g ¼ 2 0.122 0.359 0.449 0.502 0.582 0.142 0.393 0.475 0.634 0.707
g ¼ 3 0.237 0.510 0.558 0.583 0.653 0.278 0.900 0.940 0.731 0.783
g ¼ 4 0.153 0.477 0.560 0.611 0.680 0.178 0.521 0.591 0.738 0.793
g ¼ 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

See Table 1 for further details.

Table 3
Actor-referenced compensated relatednesses in some simple networks with n ¼ 576, with four different circles of compensation g ¼ 1; 2; 3;1, assuming the
same circle for actor and recipient

Circle Neighbour Model

Moran Fisher–Wright

k ¼ 2 k ¼ 3 k ¼ 4 k ¼ 6 k ¼ 8 k ¼ 2 k ¼ 3 k ¼ 4 k ¼ 6 k ¼ 8

g ¼ 1 b ¼ 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
b ¼ 2 $0.002 $0.002 $0.002 $0.002 $0.002 $0.834 $0.574 $0.506 $0.136 $0.084
b ¼ 3 $0.002 $0.002 $0.002 $0.002 $0.002 0.694 0.375 0.376 0.043 $0.119
b ¼ 4 $0.002 $0.002 $0.002 $0.002 $0.002 $0.579 $0.317 0.300 0.010 0.037
b ¼ bmax $0.002 $0.002 $0.002 $0.002 $0.002 $0.000 0.003 0.009 $0.001 $0.001

g ¼ 2 b ¼ 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
b ¼ 2 0.490 0.326 0.243 0.161 0.120 $0.002 $0.002 $0.002 $0.002 $0.002
b ¼ 3 $0.003 $0.003 $0.003 $0.003 0.120 $0.002 $0.002 $0.002 $0.002 $0.002
b ¼ 4 $0.003 $0.003 $0.003 $0.003 $0.003 $0.002 $0.002 $0.002 $0.002 $0.002
b ¼ bmax $0.003 $0.003 $0.003 $0.003 $0.003 $0.002 $0.002 $0.002 $0.002 $0.002

g ¼ 3 b ¼ 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
b ¼ 2 0.334 0.249 0.198 0.186 0.162 $0.743 $0.428 $0.379 0.007 0.027
b ¼ 3 0.161 0.078 0.094 0.042 0.135 0.693 0.373 0.374 0.041 $0.008
b ¼ 4 $0.003 $0.004 0.045 0.019 0.036 $0.579 $0.317 0.298 0.008 0.035
b ¼ bmax $0.003 $0.004 $0.004 $0.004 $0.005 $0.000 0.003 0.008 $0.002 $0.002

g ¼ 1 b ¼ 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
b ¼ 2 0.573 0.381 0.305 0.233 0.199 0.003 0.002 0.001 0.046 0.054
b ¼ 3 0.163 0.079 0.095 0.062 0.172 0.163 0.080 0.096 0.044 0.026
b ¼ 4 0.076 0.049 0.045 0.039 0.054 $0.002 $0.003 0.047 0.021 0.038
b ¼ bmax $0.005 $0.005 $0.006 $0.006 $0.006 $0.002 $0.003 $0.003 $0.003 $0.003

For further details see Table 1.
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in principle estimable from field data, and the compensa-
tion scheme (g), which, as explained before, will depend on
the kind of behaviour we are trying to understand. Suppose
we want to calculate the cost–benefit ratio that would be
favoured by selection, under the Moran scheme when
compensation for both actor and recipient is in the 2-circle,
in a square grid where each individual has four immediate
neighbours, with a population size of 576. Let us suppose
the dispersal scheme of the tables which has dii ¼ 1=121
and dij ¼ 30=121 for the neighbours. The actor-referenced
compensated relatedness can be calculated from Eq. (4) by
dividing relatedness to the neighbour (30=121$ ð2$ 30=
121Þ=575) by relatedness to self (1þ 1=121$ ð1$ 1=121Þ=
575), obtaining 8519=35015 ¼ 0:243296. This confirms the
value of 0:243 from Table 3, and we conclude from Eq. (1)
that inclusive fitness has the same sign as 0:243296b$ c.
Altruism to an immediate neighbour will therefore evolve if
b=c44:11022.

4.2. The differences between DB and BD explained

It is a curious but reliable feature of results of a number
of authors (Ohtsuki et al., 2006; Ohtsuki and Nowak, 2006;
Grafen, 2007; Lehmann et al., 2007a) that neighbourly
altruism evolves very differently under so-called DB and
BD demographic schemes, using the Moran replacement
scheme in which one individual dies and is replaced at each
time step. TDW explain, though not in these terms, that the
circle of compensation is the 1-circle in BD schemes, but
the 2-circle in DB schemes. As the compensation is in the
balancing circle under BD, no altruism evolves, but as
compensation is spread more widely there, altruism does
evolve under the DB scheme.
The question considered in this section is: why does the

demographic scheme affect the circle of compensation? The
difference between the schemes is apparently whether birth
or death comes first, but can this be biologically significant?
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Fig. 3. The figure shows the relatednesses to the central individual as arranged on the grid. Only the central part is shown, so the negative relatednesses to
distant individuals apparent in Fig. 2 do not appear here. The grid was 20& 20, and it was assumed that each individual had four immediate neighbours.
The calculations assumed a 1=121 chance of self-replacement.
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There are two distinctions to be drawn about a stage in
the demographic scheme. A stage can be global or local,
according as the decisions made in that stage select one
from the population, or one from a small group. It is
convenient to use the word ‘score’ to refer to the fitness
effects prior to the operation of density dependence, so that
the altruistic act subtracts c from the actor’s score and adds
b to the recipient’s score. A stage in the demographic
scheme can be random or it can be ‘score dependent’. All
the authors listed made the first stage global, and the
second stage local, and further they all made B score
dependent and D global. To investigate this phenomenon,
we constructed models in which death but not birth was
score dependent, and in which both birth and death were
score dependent. In order to maintain the sense that a
higher score is an advantage, and relying on the weak
selection assumption to prevent scores ever becoming zero
or negative, we assumed that where the chance of death did
depend on score, it was inversely proportional to the score.

Calculations of the weak selection fitness effects showed
that the D(random)$ B(score) scheme previously assumed
is identical to our new B(random)$D(score) scheme, and
that the previous B(score)$D(random) scheme is identical
to our new D(score)$ B(random). Both BD and DB
schemes in which both stages were score dependent allowed
altruism to evolve under the exact same conditions as each
other, but with roughly double the critical c=b ratio
required where only one stage was score dependent. Thus
the key issue is whether score affects only local competi-
tion, in which case local altruism can evolve; or only global
competition, in which case it does not; or both, in which
altruism can evolve but with more difficulty.
It is clear that it is only the score-dependent stage or

stages that mediate the effect of altruism. Score dependence
in global competition is compensated in the 1-circle, and so
is virtually neutral (~r to neighbours is $1=ðn$ 1Þ, Moran
case) or positively disadvantageous (~r is inverted, and
negative, Fisher–Wright). Score dependence in local
competition cases is compensated in the 2-circle, and so
altruism can evolve (~r is positive, Moran) or not (~r to
neighbours is $1=ðn$ 1Þ, Fisher–Wright).
Thus the interaction of local and global competition

versus score dependence and non-score dependence may be
a biologically meaningful explanation for the difference
between the demographic schemes. The order of birth and
death, however, is not.

4.3. Redefinitions of altruism

The consistent use of the term altruism has been
powerfully advocated by Rousset (2004, p. 106), as he
endorses ‘the dour conclusion . . . that much of the debate
about ‘group selection’ and ‘altruism’ boils down to an
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Fig. 4. The figure shows how relatednesses oscillate from the central
individual to succeeding neighbours. This can occur in Fisher–Wright
processes—see Appendix C.

Fig. 5. The figure shows how the density-dependent compensation is
spread around the individual with the initial fitness effect of size x. Inside
each dark-shaded circle is shown the compensation experienced when
g ¼ 1, to the immediate neighbours. In each light-shaded circle is shown
the compensation experienced when g ¼ 2, and note that the individual
herself suffers a quarter of it. The numbers just outside the circles identify
the individuals for the purposes of Eqs. (5) and (6).
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inconsistent use of words’. In this paper, it has been found
convenient to use altruism in relation to the pre-density-
dependent effects, contrary to Rousset’s advice. The
diagram of the previous section is convenient for discussing
this possible redefinition of altruism. The original ‘Hamil-
ton definition’ of altruism is an action with a positive cost
to the actor and a positive benefit to the recipient, both
measured as numbers of offspring. This must mean the net
number of offspring after taking density-dependent com-
pensation into account, as endorsed by Rousset (2004).

It is necessary to set up a notation in which the
redefinition can be explored. We have used b and c for
the pre-density-dependence benefit and cost of an action.
Let ~b and ~c represent the post-density-dependence benefit
and cost of the action to the recipient and actor, and let ~B
represent the summed post-density-dependence benefit to
all other individuals in the population. Node transitivity
implies that each individual loses the same fraction of its
original fitness effect through density dependence, and let
this fraction be m; and together with symmetry of the
dispersal matrix, it implies that the actor and recipient are
affected by the same fraction of each other’s original fitness
effect, which we shall call l. m ¼ 1=4 in the example, but l
is not specified, as it depends on how close the actor and
recipient are. If the actor were individual number 10, then
l ¼ 1=8.

These definitions allow us to write

~c ¼ c$ mcþ lb,
~b ¼ b$ mbþ lc,
~B ¼ ðb$ cÞð1$ m$ lÞ

and we note that as required by inelastic density
dependence, $ ~cþ ~bþ ~B ¼ 0.

If an action is altruistic according to the original b and c,
then b; c40, and this is easily seen to imply that ~b; ~c40.
Thus any action that is altruistic before density dependence
remains altruistic afterwards. The main problem in the
literature arises from the dubious distinction between weak
and strong altruism, in which an action is selected that is
altruistic according to the author, but not according to the
original Hamilton definition. Here, this cannot happen
because all altruistic acts taking the pre-density-dependent
values for b and c are also altruistic in Hamilton’s sense.
The distinction from the usual case of concern is that there,
the actor’s help is directed to a group that includes itself,
and so the benefit to self is greater than originally appears.
Here, the actor’s help is directed at a recipient, and the
density-dependent effects on an actor of a positive benefit
to the recipient are negative.

With this methodological worry assuaged, we can
enquire whether it is helpful to use the term altruism in
relation to the original values of b and c. It is usual in
theory to sweep density dependence under the carpet, and
assume it happens ‘out of sight’. It is probably true that
calculating empirically the effect of an action, taking out
the density-dependent effects, has never been done, and

would be rather difficult, involving observations for much
longer periods and extending over many more phenomena,
than simply measuring an initial fitness change in some
currency.
To insist on using the Hamilton sense would also be

theoretically complicated, because there are many more
recipients than one—all individuals affected by the density-
dependent compensation are also recipients of the action
on that analysis. Altruism is defined only dyadically, or at
least with a number of equal recipients, and we would
require a definition that covered a situation in which there
was an actor suffering a cost, a primary recipient gaining a
benefit, and several secondary recipients, suffering varying
positive and negative fitness effects.
Our tentative conclusion is that it is worthwhile, and

actually methodologically extremely convenient, to apply
the definitions of altruism to the pre-density-dependent
effects, although stressing it is important always to bear in
mind in drawing conclusions that this definition is not the
original Hamilton definition.
A final point concerns the difference between altruism

and cooperation. Altruism seems to us the preferable term
for the trait we are studying, because it is unilaterally
decided. Others, including TDW, have used the term
‘cooperation’, but we feel this should be reserved for
biological situations in which the effect of one individual’s
decision depends on the actions of others. Pointedly,
consider the case in which an allele is expressed with a
penetrance of only 0.1. The theory says the direction of
selection is unchanged, which is quite appropriate when
there is no synergy in the actions of the individuals. But in
a paired case, a penetrance of 0.1 would leave only 0.01 of
pairs showing the ‘cooperation’ in both individuals, and
0.18 of pairs having ‘cooperation’ in only one individual. If
the selective effect of an individual’s action does not
depend on the behaviour of the other, this does not deserve
the ‘co’ in ‘cooperation’.

5. Discussion

The theory of TDW, and as extended here, is appealingly
general within prescribed mathematical conditions, cover-
ing all graphs subject to node transitivity and symmetry of
the dispersal matrix. The population is assumed to be
finite, which is not limiting biologically, but does restrict
the models to which the theory can be applied. Subject
to finiteness of population, the range of models covered
includes all the Wrightian island and stepping stone
models, and hierarchical versions of them, and lattice
models following Malécot, as well as the regular graphs of
evolutionary graph theory. TDW present a ‘zoo’ of such
graphs, and to them we can add the graphs included by the
weakening of assumptions in Appendix B.
There are various biological limitations. The theory

assumes haploidy and asexuality, whereas the diploid
sexual case would be more relevant to most studied
organisms, and technical challenges will be posed by the
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usual sex differences in dispersal pattern (Greenwood,
1980). A further limitation is homogeneity of the popula-
tion, embodied in the assumption of node transitivity,
whose most significant implication is that there are no sinks
or sources in the population, and also that none of the
nodes is permitted to be unoccupied. Symmetry of the
dispersal matrix is also required, which might be untrue if
prevailing winds or currents made dispersal easier in one
direction than another.

A major limitation is inelasticity of the environment and
the population. Changing traits of the population cannot
increase or decrease the population size, or local group size,
and this limits the kind of social traits that can plausibly be
represented. Elastic environments (Lehmann et al., 2006)
are a more generally realistic case.

The life-cycle assumptions are general in that they
include the Fisher–Wright process at one end, and limit
to the Moran process (at least for present purposes) at the
other. However, there limitations too. In the Moran
process, one individual is replaced in each time step. The
analytical results assume that the altruistic behaviour
affects either the chance of being the replaced individual
or the chance of providing the offspring to replace that
individual, though we considered the combination in the
numerical calculations of Section 4. Further, when more
than one individual is replaced in a time-step, we have
implicitly made the assumption that, conditional on which
individuals are to be replaced, the processes of replacement
are independent. This amounts to an assumption of very
many offspring produced in each time-step, so that if I
supply the replacement for one individual that does not
affect my chances in another replacement.

The value of the theory developed here, extending the
important results of TDW, is that is provides a very
powerful and explicit analysis of a well-defined general
case, which may prove to be useful in further developing
our understanding of more realistic cases.
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Appendix A. Theoretical development

Each of a finite set of n nodes is occupied by one
individual, and the individuals reproduce and die through a
series of steps. The probability that the parent of an
individual at node i occupied node j is Dij . The matrix
representation in this appendix will use capital letters for
variables represented by lower case letters in the main text.
Deaths occur at a series of steps, and at each step, each
individual has a (pairwise independent) probability s of
surviving, and 1$ s of dying and being replaced. Each
offspring has an independent probability m of mutating to a
new genotype. Let ðGtÞij be the probability that individuals
at nodes i and j have genotypes that are identical by descent
at step t. Then we obtain the following equation for Gtþ1:

Gtþ1 ¼ s2Gt þ 2sð1$ sÞð12ð1$ mÞðDGt þ GtD
TÞÞ

þ ð1$ sÞ2ð1$ mÞ2DGtD
T þ Ltþ1,

where Ltþ1 is a diagonal matrix that ensures the diagonal
elements of Gtþ1 each equal 1.
It may be helpful to remind readers of the definitions of

Gantmacher (1960), as we will use his terminology and rely
on theorems mainly in Volume 2, Chapter XIII, Section 7.
A stochastic matrix is regular if all its eigenvalues of
modulus 1 are equal to 1, and fully regular if there is only
one such eigenvalue and it is algebraically simple.
We now assume that D is symmetric, and without loss of

generality we declare all alleles to be non-identical by
descent in generation 0, so G0 ¼ I . We also assume node
transitivity, which guarantees that the diagonal elements of
Lt are all equal to each other. On this basis it easy to show
that Gtþ1 commutes with D provided Gt does. As G0 ¼ I ,
we conclude that Gt commutes with D for all t. Hence we
can define bistochastic matrix E and scalar e40 by

eE ¼ s2I þ 2sð1$ sÞð1$ mÞDþ ð1$ sÞ2ð1$ mÞ2D2,

E1 ¼ 1

and then define Zt by

Gtþ1 ¼ eEGt þ Ztþ1I ,

ðGtÞii ¼ 1

and so ‘solve’ the recursion as

Gt ¼
Xt$1

m¼0

Zt$me
mEm.

We assume that Gt converges to G1ðmÞ, say, and so that Zt
does too, to Z1ðmÞ, and that both limits are continuous
functions of m. If E is regular, then E1 exists and is
proportional to the limit of G1 as m ! 0. Iff E is fully
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regular, E1 ¼ 11T=n and so G1 ¼ 11T. We assume full
regularity of E from now on, and so exclude the
possibilities that the network is not connected, and that
there are separate non-intersecting subpopulations.

It is worth noting that these assumptions exclude some
examples studied in the literature. For example, consider
the square grid when dij ¼ 1=4 for four immediate
neighbours from Fig. 1. When s ¼ 0, we have E ¼ D2,
and D2 is reducible, reflecting the complete separation of
two subpopulations corresponding to the white and black
squares on a chessboard. Such difficulties have been
avoided in the numerical examples of Section 4 by allowing
a small chance of self-replacement.

We proceed to find the relatednesses in the limit as
m ! 0, by dropping the time-step subscripts on G,
differentiating with respect to m, evaluating at m ¼ 0,
dividing by 1$ s, and solving for Z0 ¼ 2nð1$ sÞ (by post-
multiplying by 1) to obtain

ð1þ sÞG0 ¼ 2sð1$ sÞDG0 þ ð1$ sÞ2D2G0

$ 2ð1$ sÞ11T þ 2nI .

We now show that the relatedness matrix R is equal to
11T þ a$1G0 where a is defined by R1 ¼ 0. Relatedness is
defined, for example by TDW, in terms of identity by
descent as rij ¼ ðgij $ ḡÞ=ð1$ ḡÞ where ḡ is the average of
the gij. All the gij go to 1 as m ! 0, so we rewrite and use
L’Hôpital’s Rule as follows:

1$ rij ¼
limm!0 ð1$ gijÞ=m
limm!0 ð1$ ḡÞ=m

,

1$ rij ¼ a$1 lim
m!0

1$ gij
m

,

where a is defined as the denominator. The remaining limit
equals $g0ij , thus showing

rij ¼ 1þ a$1g0ij

which translated into matrix notation gives the required
result. The requirement R1 ¼ 0 ensures that the mean
relatedness to the population is zero.

Proceed by substituting for G0 to obtain

ð1þ sÞR ¼ 2sDRþ ð1$ sÞD2R$ 2a11T þ 2anI

and, substituting l ¼ 2a=ð1þ sÞ,

R ¼
2s

1þ s
Dþ

1$ s

1þ s
D2

! "
R$ l11T þ lnI , (8)

where we can conveniently define l as maintaining the
diagonal elements of R at 1.

Defining the factor of R in Eq. (8) as C, we can write

R ¼ CR$ l11T þ lnI .

C is an average of D and D2, and so also commutes with R.
The relatedness of individual i to the 1-circle (resp. g-circle)
of individual j is given by the i; jth element of DR (resp.
DgR). The relatedness of individual i to the weighted
mixture 2s=ð1þ sÞ of the 1-circle and ð1$ sÞ=ð1þ sÞ of the

2-circle is given by CR, and to the kth self-convolution of
that mixture by CkR.
The compensated relatedness to the kth self-convolution

is ~Rðt'kÞ ¼ R$ CkR. Iff C is fully regular, the limit
C1 ¼ 11T=n, and we now make that assumption for the
remainder of the appendix. It is easy to confirm that

~Rðt'kÞ ¼ l
Xk$1

m¼0

ðnCm $ 11TÞ. (9)

(If C is not fully regular, then compensation is not spread
evenly as k increases, but asymptotically is concentrated on
particular subsets.) The simplest case of k ¼ 1 shows that

l$1 ~RðtÞ ¼ nI $ 11T (10)

which shows that the relatednesses are in the same
proportions (1 to self and $1=ðn$ 1Þ to each other
individual) as in the non-viscous case. We define rt, the
relatedness to the t-circle, as the common diagonal element
of CR, and note that it satisfies

rt ¼ 1$ lðn$ 1Þ; l ¼
1$ rt
n$ 1

.

At the other extreme, the limit of R$ CkR as k ! 1
exists and is equal to R itself, because C1R ¼ 11TR=n and
1TR ¼ 0. This provides a formula for R

R ¼ ~Rðt'1Þ ¼ l
X1

m¼0

ðnCm $ 11TÞ

and it is worth recording the inverse relationship

C ¼ I $ l
X1

m¼0

ðnðI $ RÞm $ 11TÞ (11)

which shows how to derive C from R. The value of l can be
expressed in terms of the eigenvalues gn of C as

l ¼
1P

nat1=ð1$ gnÞ
, (12)

where t indexes the leading eigenvalue gt ¼ 1 correspond-
ing to the eigenvector 1. On the assumption of full
regularity there is exactly one eigenvalue of modulus 1
and it equals 1.

Appendix B. Assumptions on D

A permutation of the nodes can be represented as an
invertible matrix P, P1 ¼ 1 and Pij 2 f0; 1g, so also
P$1 ¼ PT. Let ui be the vector with a 1 in position i and
zeroes elsewhere. Then we can express the assumption
of node bitransitivity, introduced in this context by Taylor
et al. (2007a), as

For each ordered pair of nodes ði; jÞ there exists a
permutation P such that Pui ¼ uj, Puj ¼ ui and
PDPT ¼ D.
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The significant implications are that D and DG are
symmetric, from which it follows that D and G (and so G0

and R) commute.
The conclusion that G and D commute is reached in

Appendix A on the basis of the weaker assumptions
of symmetry of D, and of node transitivity—which states
that for each ordered pair of nodes ði; jÞ there is a
permutation such that Pui ¼ uj and PDPT ¼ D. Indeed
the only property for which node transitivity is required is
that the diagonal elements of each power of D are equal to
each other (though not necessarily equal to those for
different powers), which we term ‘the diagonals condition’.

We record two graphs that are included in the weaker
assumptions but are excluded by node bitransitivity. One is
graph (e) in Box 1 in TDW itself. They point out that
although not satisfying node bitransitivity, it does conform
to their conclusions, and our weakening of the assumptions
explains why. The other is a cycle with an even number of
nodes, in which the Dij between neighbours alternates
around the cycle.

Colin McDiarmid and Peter Cameron kindly pointed
out to us a well-known kind of graph that fulfils the
diagonals condition but does not satisfy node transitivity.
A particular example has 25 nodes, and each node is
connected to 12 others. Arranged in a five-by-five grid, with
a Latin square arrangement as shown in Fig. B1, each node
is connected to all nodes in the same row, and in the same
column, and that share the same letter.

It is easy to see that node transitivity is lacking. The
largest complete subgraphs are of order 5, and each node
belongs to three of them: one each for the row, column and
letter. There are also complete subgraphs of order 4 that
are not subsets of those of order 5, and they are seen in the

figure as four nodes that are at the vertices of a rectangle
that has the same letter at opposite vertices. The top-left 2
by 2 corner is an example. The number of such complete 4-
subgraphs to which the elements belong varies from 4 (the
B in the first column), to one (all other elements in the first
column or second row, and four further elements) to zero
(12 nodes, including the D at bottom right). Node
transitivity is thus impossible, as the number of complete
4-subgraphs to which an element belongs has to be
invariant under isomorphisms.
The diagonals condition, however, is met. Let the

adjacency matrix be A. The graph is strongly regular and
it is a textbook result that therefore A2 is a linear
combination of I, A and 11T (e.g. Bollobás, 1998, p. 274).
Because A1=12 ¼ 1, it follows by induction that Ak is also a
linear combination of I, A and 11T, and from this it follows
that the diagonal elements of Ak are all equal. The dispersal
matrix D is A=12, and so this graph meets the diagonals
condition.
We do not want to replace the condition on node

transitivity with the condition of strong regularity, how-
ever, as node transitivity permits weighted links between
nodes, whereas strong regularity requires two nodes to be
either connected or not. The best we can say is that node
transitivity and symmetry are jointly sufficient for com-
mutativity of D and G, but not necessary. It remains to be
seen whether the extra freedom implied by the existence of
this counter-example can be turned to biological use.

Appendix C. The sawtooth effect

In the Fisher–Wright (s ¼ 0) case, balancing compensa-
tion occurs at the 2-circle. It is to be expected on general
grounds that when g ¼ 1, compensated relatednesses are
negative for neighbours, and more negative for closer
neighbours. This phenomenon is demonstrated in the
numerical examples in Section 4: here it is shown that
there are implications for the pattern of compensated
relatednesses under the Fisher–Wright process. Note that
Appendix B discusses compensation in the t-circle and in
circles of the kth self-convolution of t. Here we discuss
compensation in the g-circles for integer g. In the terms of
the Fisher–Wright case, the previous appendix discussed
~Rðt'kÞ ¼ R$ CkR, while here we discuss ~RðgÞ ¼ R$DgR. It
follows from this definition that

~Rðgþ1Þ ¼ D ~RðgÞ þ ~Rð1Þ,

~RðgÞ ¼
Xg$1

m¼0

ðD$ 11T=nÞm
 !

~Rð1Þ.

The subtraction of 11T=n does not affect the product with
R as 1TR ¼ 0 and 1TD ¼ 1T, and it allows the matrix
powers to converge to the zero matrix. The sawtooth
emerges when D has an eigenvalue close to $1, as the odd
and even powers of the matrix pull the relatednesses in
opposite directions. Numerical examples are shown in
Section 4, and the sawtooth is illustrated in Fig. 4.
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Fig. B1. The figure describes a graph with 25 nodes that is not node-
transitive, but does have the property that for each of the powers of the
dispersal matrix, the diagonal elements are all equal. A node is connected
to all nodes (i) in the same row (ii) in the same column or (iii) sharing the
same letter. This is illustrated for the central ‘E’ in black, with all its
connected nodes shown in grey. Each node has 12 neighbours, and each of
those 12 has an equal chance of providing the replacement offspring when
the node’s occupant dies.
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